

Alfa Instrumentos Eletrônicos

MANUAL DO USUÁRIO INDICADORES DE PESAGEM LINHA 3100D/DS

Última alteração	Número do documento	
29/04/2025	0132-MN-03	

MANUAL DO USUÁRIO INDICADORES DE PESAGEM LINHA 3100D/DS

1 Introdução3
1.1 Conceito
1.1.1 Família Alfa Instrumentos 3100D3
1.1.2 Família Alfa Instrumentos 3100DS
1.2 Características comuns entre Indicadores de Pesagem da Família Alfa Instrumentos 3100D e 3100DS
1.3 Instalação5
1.3.1 Aterramento Linha 3100D5
1.3.2 Aterramento Linha 3100DS5
1.3.3 Condições locais Linha 3100D6
1.3.3.1 Características da fonte de Alimentação
1.3.3.2 Características da alimentação da placa 3100D6
1.3.3.3 Instalação do Indicador 3100D6
1.3.4 Condições locais Linha 3100DS6
1.3.4.1 Características da alimentação da placa 3100DS7
1.3.4.2 Instalação do Indicador 3100DS7
1.3.5 Conexões da Linha 3100D/DS7
1.4 Descrição do Painel Frontal8
1.4.1 Informações visuais do painel frontal8
1.5 Quadro comparativo de funcionalidades 3100D/DS:
1.6 Fluxograma de Configuração da Linha 3100D/DS
1.7 Legenda e Opcões da Linha 3100D/DS
1.8 Diagrama de Conexões Linha 3100D/DS
1.9 Configuração e Operação 13
1 10 Funções de Pesagem 13
2 Interface BASE 13
21 Função Zero Automático (ATZ)
2.2 Função Zero Inicial (ZINII)
2.3 Função Tara (TARA) 13
2.4 Euroão Bruto (BTO) 14
2.5 Euroão Doctoro Automático (DALIT)
2.6 Filtroe Digitais (EII.)
2.7 Toda Improsção / Acumulado (TI)
2.9 DIF (DIFA)
2.10 Sentrala do Usuano (SENH)
2.11 Controle da Interisidade do Brinto do Display (INT)
2.12 Nullielo de selle da PCB (NPCB)
2. 13 Leilura Direta do AD (LETTD)
3 Indicação Faita-Sobra (F-S)
4 Saldas de Nivels (Nivels)
5 Interrace Ethernet (ETH)
6 Protocolos de Rede (NETPR)
6.1 Protocolo Modbus TCP
b.1.1 Comandos disponíveis Modbus ICP 18 C4.4.4
b.1.1.1 Modbus ICP – Leitura dos valores dos niveis
6.1.1.2 Modbus ICP – Leitura dos parametros dos niveis
0.1.1.3 Modous ICP – Leitura de peso e status
6.1.1.4 Modbus TCP – Leitura do relógio
6.1.1.5 Modbus ICP – Comandos remotos
6.1.1.6 Modbus ICP – Configuração Zero

6.1.1.7 Modbus TCP – Configuração Tara	19
6.1.1.8 Modbus TCP – Configuração Filtro	19
6.1.1.9 Modbus TCP – Configuração dos valores dos níveis	19
6.1.1.10 Modbus TCP – Ajuste do relógio	19
6.1.1.11 Modbus TCP – Configuração do valor de tara editável	19
6.1.2 Mensagens de erro para o protocolo Modbus TCP	19
6.1.3 Exemplo de comandos do Modbus TCP utilizando RealTerm	20
6.1.3.1 Comandos utilizando o RealTerm	20
6.1.3.2 Configuração do RealTerm	20
6.1.4 Enviar comandos via RealTerm	20
7 Interfaces Seriais (SERIAL)	20
7.1 Versão de Protocolo de Comunicação (VER)	21
7.2 Protocolo T02	21
7.2.1 T02 com VER – STD (padrão)	21
7.2.2 T02 com VER – ADV (avançado)	21
7.3 Protocolo TRC (Transmissão Contínua)	22
7.3.1 TRC com VER – STD (padrão)	22
7.3.2 TRC com VER – ADV (avançado)	22
7.4 Protocolo AA (Alfa ASCII)	22
7.4.1 AA com VER – STD (padrão)	22
7.4.2 AA com VER – ADV (avançado)	22
7.5 Especificação do cabo	22
7.6 Taxa de transmissão vs. comprimento do cabo	22
7.7 Terminadores de Linha	22
7.8 Geometria das linhas de transmissão	23
7.9 Aterramento e Blindagem	23
7.10 Redes RS-485 Descrição	23
8 Impressão Serial (INPRES)	23
8.1 Saída para Impressão Serial (IS)	23
8.2 Quantidade a imprimir (QTDI)	24
8.3 Configuração do posicionamento da etiqueta (IPOSH e IPOSY).	24
8.4 Escolha da fonte para o Protocolo EPL (FONT)	24
8.5 Configuração das dimensões da fonte para o Protocolo Z (FONTA e FONTI.)	'PL 24
8.6 Configuração da orientação da impressão para o Protocolo ZPL	24
9 Contadora (CONTA)	24
9.1 Habilita (HAB)	24
9.2 Quantidade de pecas para amostra (QTDE)	24
9.3 Captura do peso das amostras (CAPTUR)	24
9.4 Edição do peso da amostra (ANOSTR)	24
9.5 Descrição da operação	24
9.6 Impressão serial Contadora	25
10 Saída Analógica (ANALOG)	25
11 Interface Relógio (RELOG)	25
12 Aiuste do Indicador	26
13 Alfa Web Monitor	27
13.1 Indicador de Pesagem	28
13.2 Gráfico de Pesagem	20 20
13.3 Falta-Sohra	20
13.4 Níveis	29
13.4.1 Características elétricas de acionamento dos níveis	-0 20
10.7.1 Ouracionationas distincas de acionalitétilo 405 1117615	23

0132-MN-03

13.5	Contadora						
13.6	Configurações						
13.6.1	Base						
13.6.2	Falta-Sobra30						
13.6.3	Níveis						
13.6.4	Ethernet						
13.6.5	Protocolos de Rede31						
13.6.6	Interface Serial						
13.6.7	Impressão Serial31						
13.6.8	Saída Analógica32						
13.6.9	Data e Hora32						
13.6.1	0 Ajuste de Pesagem32						
13.7	EZ-Swap35						
13.7.1	Como utilizar o EZ-Swap35						
13.7.1	.1 Gerar o arquivo de recuperação35						
13.7.1	.2 Restaurar o Sistema						
13.8	Status do Sistema35						
13.9	Informações35						
13.10	Login						
14 (Comando remoto						
15 I	_ED de Status						
16 I	Mensagens do Sistema						
17	Dispositivos de proteção36						
18 .	Tabela de Erros37						
19	Especificações						
20	Complementos opcionais da família 3100D/DS Alfa Instrumentos 38						
21	Contato						

1 Introdução

1.1 Conceito

Os Indicadores de Pesagem da família 3100D/DS são dispositivos eletrônicos para utilização em balanças industriais presentes nos diversos segmentos, incluindo os mais exigentes, como: alimentício, frigorífico, sucroenergético, fertilizantes, químico e petroquímico, siderúrgico, mineração, naval, papel e celulose, borracha, automobilístico, agropecuário. Desta forma podem atender os diversos campos de aplicação sendo instalados em plataformas, silos, tanques, misturadores, sistemas de dosagem, dispositivos de segurança contra sobrecarga, entre outros.

Observação: O termo "Calibração" foi substituído pelo termo "Ajuste" para que todos os produtos Alfa Instrumentos Eletrônicos estejam com as suas terminologias adequadas ao VIM – Vocabulário Internacional de Metrologia.

Características funcionais:

- **Comandos remotos:** para ambientes de difícil acesso ou montagem em caixas Ex para áreas classificadas;
- Conectividade: diversos protocolos de comunicação com uso de conversores em rede com CLPs e SUPERVISÓRIOS (EtherNet/IP, PROFINET, DeviceNet e PROFIBUS);
- Proteções: especial atenção foi dedicada à proteção elétrica em função da responsabilidade que envolve a pesagem em processo Industrial. Grande parte dos componentes da placa de circuito impresso destina-se à proteção contra: descargas eletrostáticas, interferência de Rádio Frequência, ligações equivocadas, curtoscircuitos, fonte invertida ou transitórios nas linhas de comunicação. Contém vários reguladores de tensão internos para purificar a alimentação, isolar galvanicamente e garantir pesagem estável em condições de ruído difíceis para indicadores comuns;
- Alta capacidade de excitação: algumas aplicações exigem ligação em paralelo de maior número de Células de Carga, por exemplo, plataformas múltiplas, balanças siderúrgicas. Possui capacidade de excitação até 32 células de 350Ω em paralelo, ou 64 de 700Ω;
- Saídas de níveis: auxilia no controle de enchimento automático de embalagens, tambores, reservatórios ou silos através de dosagem simples;
- Indicação FALTA-SOBRA: para controle passa/não passa de embalagens;
- Impressão de etiquetas: no controle de estoque e expedição/recebimento de mercadorias com impressoras padrões Zebra, Bematech e Epson;
- Aplicações com grau IP69K: para ambientes com água, poeira e maresia, tais como indústrias siderúrgicas, de mineração, de vidro, de pneus, alimentícia etc.;
- Mostrador de 15 x 90 mm, composto por 6 dígitos de 7 segmentos.

1.1.1 Família Alfa Instrumentos 3100D

- Higienização: possui Grau de proteção IP69K, montados em caixa inox 304, importante na indústria frigorifica por exemplo, o que facilita a limpeza do equipamento;
- Equalizador de pressão: o Equalizador de Pressão com Bloqueio de Umidade equilibra a pressão e impede a condensação no interior dos recipientes. Ideal para ambientes úmidos;
- Conexões: Ligação em bornes internos, tipo mola que eliminam maus contatos e facilitam o intercâmbio de indicadores pois não utilizam parafusos;
- Proteção contra intempéries: Além de possuir robusta caixa com grau de proteção IP69K a passagem dos fios é feita via prensa-cabos estanques;

 Instalação: Suporte móvel facilitando sua fixação em superfícies horizontais e verticais através de parafusos sem afetar a vedação e o lacre;

1.1.2 Família Alfa Instrumentos 3100DS

- Conexões: a pesagem em processo industrial geralmente é crítica quanto ao tempo de parada para manutenção. Todas as ligações são claramente identificadas na etiqueta traseira. Não há necessidade de desparafusar os fios para remoção do aparelho, evitando-se perda de tempo com reconexões. As presilhas de fixação ao painel são práticas e facilmente acessíveis;
- Miniaturizado, embutido em painel: os Indicadores Alfa Instrumentos 3100DS são os mais finos atualmente no mercado: apenas 15mm de espessura. Esta qualidade possibilita painéis mais rasos e montagem de outros equipamentos sob o Indicador;
- Acabamento: mesmo sendo destinada a aplicações industriais a linha Alfa Instrumentos 3100DS tem acabamento primoroso, evidenciando sua alta qualidade, valorizando o equipamento onde está instalado;
- Robustez: caixa totalmente em inox (não apenas a face), painel frontal de policarbonato e junta periférica de vedação proporcionam grau de proteção IP67 externo (se instalado adequadamente), adequado a ambientes muito agressivos: siderúrgicas, frigoríficos, químicas, fertilizantes etc. No teclado sente-se confortável click, táctil e sonoro, confiável em longo prazo, muito diferente dos teclados de membrana comuns. Protegido por filtros de RF e supressores de descargas eletrostáticas. Atenção: Para garantia do grau de proteção e características ambientais, é necessário instalação em painel;
- Opcionalmente o gabinete pode ser acondicionado a uma caixa à prova de explosão com barreiras de segurança intrínseca, para uso em áreas classificadas;
- Alimentação 8 a 32Vcc, corrente contínua: conecta-se diretamente à +24Vcc do ambiente de automação.
- 1.2 Características comuns entre Indicadores de Pesagem da Família Alfa Instrumentos 3100D e 3100DS
- Alta imunidade a interferências eletromagnética (EMI) e de rádio frequência (RF);
- Teclado de funções rápidas de fácil operação;
- Opções de filtro digital para estabilização das pesagens em aplicações sujeitas a diversas intensidades de vibrações;
- Captura automática do ZERO em operação e/ou ao se ligar o Indicador de Pesagem;
- Detector de movimento na plataforma de pesagem assegura validação do peso;
- Saídas de níveis (SETPOINTS) programadas individualmente, submetidas à função de HISTERESE ajustável, incorporando opção de inversão de acionamento e recurso de TRAVA;
- Todas as funções de pesagem podem ser acionadas remotamente através do comando remoto, via Modbus RTU ou Alfa Web Monitor (exceto Ajuste de Pesagem);
- Configuração das funções do indicador através de mensagens exibidas no mostrador, conforme fluxograma de configuração;
- Possível realizar toda a configuração do indicador sem alterá-la e sem rompimento do lacre de segurança (exceto Ajuste de Pesagem);
- Conversor A/D: 24 bits de baixíssimo ruído (típico < 90 nanovolts) em configuração ratiométrica onde a tensão de Sense (+/-S) é utilizada como referência para conversão do Sinal em (+/-I). Taxa de conversão default = 60 conversões por segundo com filtro sinc, resultando em rejeição a ruídos da rede elétrica, motores,

transformadores etc. em 60Hz e harmônicos. Há limitadores de corrente de curto-circuito em todas as conexões às células de carga com qualquer combinação de fios entre si ou à terra, e grampeadores de tensões positiva e negativa contra descargas eletrostáticas nas entradas, ou ligações equivocadas. A limitação contra sobre tensão é de alta precisão, protegendo os componentes do circuito de conversão A/D. A proteção contra RFI é efetuada por filtros de alta perda de inserção cobrindo a faixa de 100Mhz a 10GHz. A filtragem de baixas frequências é efetuada por filtros de modo comum e modo diferencial, de baixo ruído Johnson. Estes proporcionam pureza de sinal mesmo sob severas interferências;

- Excitação: do tipo Kelvin, com sensoriamento remoto da tensão efetiva presente nos terminais das Células de Carga. (+/- S) e regulador de excitação independente de baixo ruído, protegido contra curto-circuito e descargas reversas, com capacidade para operar, dentro das especificações de exatidão, até 32 Células de Carga de 350Ω , ou 64 de 700 Ω . As células de carga são conectadas a 6 fios sendo: +/-S (Sense) e +I/-I (Signal Input) de muito alta impedância, com baixa injeção de corrente de polarização (bias). Nas ligações preferenciais a 6 fios ocorre a amostragem da tensão (+/- S) que efetivamente chega às células, compensando automaticamente as perdas por resistência nos cabos de ligação, bem como cancela os efeitos prejudiciais ao ajuste de pesagem devidos à variação desta resistência com a temperatura, bastante significativa no cobre. Na presença de Barreiras de Segurança Intrínseca ("Zener") ocorre compensação das perdas de excitação devidas à resistência interna destes dispositivos, mantendo a classe de exatidão mesmo com Células em paralelo e resistência variável com a temperatura. Quando utilizadas células à 4 fios, é necessário conectar os bornes +S com +E, e -S com -E. Caso contrário o conversor A/D ficaria sem referência produzindo resultados erráticos. Neste caso não há compensação de perdas, portanto recomenda-se sempre utilizar ligações a 6 fios, pelo menos até a Caixa de Junção das Células de Carga. A excitação também é protegida contra interferência de RF;
- Processamento de sinal microcontrolado: as conversões são efetuadas com resolução de 16.777.217 divisões e os cálculos internos com 500.000 divisões sendo apresentadas com até 10.000 divisões no display para atender com margem de segurança as especificações da Classe III, da portaria 236/94 do INMETRO. Em sistemas automáticos, a linha 3100D pode ser utilizada com até 200.000 divisões estáveis e exatas. Além da filtragem frontal de hardware a linha 3100D possui uma coleção de filtros digitais por software, para o melhor desempenho em aplicações especificas como: pesagens rápidas, com vibração intensa, carga em movimento, estruturas grandes, animais vivos etc.;
- Memória não volátil: todos os parâmetros de ajuste de pesagem, bem como os status de pesagem e programação, são armazenados em memória não volátil FRAM com retenção de dados de aproximadamente 90 anos, dependendo da temperatura de operação;
- Relógio RTC: Equipado com bateria de lítio interna (CR2032), o sistema mantém data e hora da pesagem mesmo com o equipamento desligado. O RTC é utilizado para impressão de etiquetas, com sincronização via comunicação serial. Em caso de ausência da bateria, o mesmo relógio de software assume a função, preservando a impressão de data e hora enquanto houver alimentação elétrica..
- Saídas Seriais: comunica-se digitalmente com CLPs, displays remotos, softwares supervisórios e impressoras, por três canais: serial RS-232 para impressoras e etiquetadoras, interface de comunicação RS-232 e RS-485 (selecionável no menu) em Modbus-RTU nativo, com possibilidade de operar via Conversor opcional em DeviceNet, PROFIBUS-DP, EtherNet/IP e PROFINET. São selecionáveis outros protocolos de comunicação. A taxa de comunicação é configurável de 4800 até 230400 bps. Todas as linhas das seriais possuem filtros de RFI com alta perda de inserção. A linha RS-485 pode ser terminada localmente quando o instrumento estiver na extremidade desta, acionando-se a chave "TERMINAÇÃO RS-485" (disponível no interior do equipamento). A entrada RS-485 é protegida contra surtos de tensão. No painel frontal há 2 LEDS para monitoração da atividade de linha, sinalizando Tx/Rx para facilitar diagnóstico da comunicação;
- Impressão de Etiquetas: possui drivers para etiquetadoras padrão Zebra nas linguagens EPL e ZPL. Contempla também as impressoras

ASCII com dados de: Peso Bruto/Líquido, Tara, Data e Hora, configurada como 1 linha de texto;

- Porta Ethernet TCP/IP com AWM Alfa Web Monitor e Modbus TCP;
- Saída Analógica: em corrente 4/20mA, com resolução de 16 bits e faixa de operação programável para melhor aproveitamento dinâmico da entrada A/D do CLP. A saída 4/20mA é protegida contra: descargas eletrostáticas, ligações erradas permanentes ao +24Vcc. Possui fonte com regulador próprio, isolada galvanicamente contra diferenças de aterramento até 1000Vcc: evita erros de corrente causados por loops de terra e tensão induzida, bem como protege os circuitos de saída do conversor D/A na fonte de +24Vdc. No painel frontal encontra-se LED de alarme de loop aberto ou erro no circuito;
- Proteções: contra tensão reversa, retorno de picos de tensão;
- Níveis: Níveis de corte com relés de estado sólido (SSR), para implementação de controles de dosagem simples, enchimento automático de embalagens, tambores, assim como controle e alarme em tanques ou silos. Todos os relés de estado sólido (SSR) são configuráveis independentemente e individualmente com o valor de setpoint. Pode-se implementar lógica invertida (NF em repouso), valor percentual de Histerese (de 1 a 99%) e a função Trava que mantém o relé de estado sólido (SSR) energizado mesmo após a queda do valor do peso. Todos os contatos são protegidos contra arcos voltaicos por Varistores internos. No painel frontal há 1 LED em conjunto com cada relé de estado sólido (SSR) o (zero), também denominado como V, tem opção no menu para lógica de sinalização de balança vazia;

ATENÇÃO: Para efetuar as conexões nas saídas de níveis do Indicador de Pesagem, é fundamental atentar-se às características elétricas permitidas pelo equipamento. As especificações do relé são: Tensão nominal: 24Vcc/ca

Corrente máxima: 0,5A

- Comando Remoto: há aplicações onde é necessário acionamento de teclas sem acesso direto ao painel frontal (ex: em caixas à prova de explosão), ou quando o acionamento muito frequente pode sujar ou danificar o painel, permitindo usar botão externo ou pedaleira, assim como pode ser desejável alguma automação por microswitches de fim de curso. Os comandos de Tara, Zero, Acumulação, Impressão, Configuração e Bruto/Líquido são disponíveis em conector interno no painel traseiro com acionamento por contato à terra; disponível em todos os modelos.
- Sinalização Falta-Sobra: pode-se definir Peso Alvo e utilizar o recurso Falta-Sobra para: embalagem, verificação, seleção passa não passa e classificação por peso. A visualização pelo painel frontal é feita com fileira de 8 LEDs coloridos indicando 50%, 60%, 70%, 80%, 90%, 100% +/- tolerância, >100% e >110% do Peso Alvo. Além da indicação visual há vários modos de sinalização sonora: BIP fora, dentro, contínuo fora e contínuo dentro. Os relés 1, 2 e 3 podem ser configurados para fornecer sinalização externa e automação de seleção;
- BIP: possui BIP interno para alarmes e interação com o operador;
- Display: com 6 dígitos de alta intensidade. A posição do ponto decimal (ou vírgula) e o recurso de zero fixo são configuráveis no menu, de modo a apresentar 3 casas após o ponto quando necessário, evitando indução a erro de leitura. As legendas de unidade: g (grama), kg e t (tonelada) são selecionáveis. Há indicação de peso estável (E) significando que a leitura é válida, transmissível e imprimível. Uma legenda (I) confirma o envio de dados para impressão sob comando da tecla IMP. Quando o sistema de pesagem estiver vazio ou sob comando da tecla ZERO com menos de 2% de peso, acende-se indicador "ZERO". A tecla TARA comanda o desconto do valor presente sobre o sistema e passa a ler-se peso líquido acendendo o indicador (L). Ao destarar, volta a acender a legenda (B). A tecla BTO mostra por tempo limitado o valor original bruto quando a leitura em curso é de Peso Líquido, para se obter avaliação da Tara presente no momento;
- Proteção por Senha ao menu de configuração;

4

- Captura Automática de Zero ao ligar equipamento;
- Captura automática da Deriva de Zero do sistema, por exemplo, uma plataforma externa sob acréscimo lento de peso devido à chuva;
- Tara Automática que reconhece a colocação de recipiente vazio e Tara seu peso morto automaticamente;
- Destara Automática: reconhece retirada do recipiente e volta ao Peso Bruto automaticamente;
- Gravação ou não do valor da Tara em Memória não volátil;
- Permissão ou não de Tara Sucessiva, para facilitar dosagem;
- Tara Editável manualmente;
- Memorização Contínua do Zero para não haver perda de exatidão no retorno, caso falte energia;
- Tara Memorizada, pelas mesmas razões;
- Acumulação de pesagens por comando da tecla IMP, com totalização legível, imprimível e resetável;
- Visualização de toda Configuração do indicador, sem risco alterá-la (somente leitura);
- Leitura Direta do conversor A/D para diagnóstico.
- Saída Analógica PB/PL: proporcional ao Peso Bruto, ou ao Peso Líquido;
- Saída Analógica 0/20mA: Para aplicações onde se deseja medir o resultado da saída analógica em tensão, pode-se utilizar resistor de 500Ω para obter leitura de 0/10 Volts sobre ele na recepção;
- Ajuste de pesagem: ajusta-se à faixa de medição ao informar o valor do peso de ajuste, com somente duas operações: Sem Peso e Com Peso; Através do Alfa Web Monitor é possível verificar a classificação de qualidade do Ajuste em uma escala de zero a cinco, onde nota zero indica Ajuste inválido (erro de span) e nota cinco um ajuste melhor que meia divisão.
- Escolha do Degrau de incremento das últimas casas: 1, 2, 5, 10, 20 ou 50 unidades (10/20/50 com zero fixo ativado);
- Sinalização de erro interno;
- Função Contadora para todos os modelos.

1.3 Instalação

Para segurança do operador e do próprio indicador é necessário estar atento às seguintes recomendações:

- Não ligue o indicador, caso o cabo de alimentação ou plugue estejam danificados.
- O cabo de alimentação deve ser mantido longe das superfícies quentes, molhadas ou úmidas.
- Certifique-se que o cabo de alimentação se encontra desimpedido, que não esteja esmagado ou prensado por produtos ou equipamentos, e que os terminais do plugue estejam conectados perfeitamente na tomada, sem folgas.
- Caso precise desligar o indicador da rede elétrica, faça-o sempre pelo plugue e nunca pelo fio.
- O acionamento das teclas do indicador deverá ser sempre com os dedos e nunca com objetos.
- Use um pano seco e macio para limpar o gabinete do indicador. No caso de manchas mais difíceis, utilize um pano levemente umedecido em água e sabão neutro. Nunca use benzina, thinner, álcool ou outros solventes químicos na limpeza do indicador.

- O indicador e os equipamentos a ele interligados devem ser instalados, ajustados e mantidos em perfeito funcionamento somente por pessoas tecnicamente qualificadas e familiarizadas com todos os equipamentos do sistema e dos perigos potenciais implicados. Além de pôr em risco o funcionamento, o cliente poderá vir a sofrer multa e ter a interdição da balança pelo IPEM (Instituto de Pesos e Medidas) ou INMETRO caso o lacre seja rompido.
- O uso de tomadas aterradas é fundamental para uma proteção contínua contra o perigo de descargas elétricas.
- Nunca corte o pino terra do plugue de alimentação.
- Assegurar que o sinal de terra do cabo está conectado ao sistema de terra físico de baixa resistência.
- Não romper o lacre de proteção, evitando assim uma interdição e multa por parte do IPEM ou INMETRO.
- Verificar se a vedação dos prensa-cabos está correta. Deve-se apertar o anel do prensa-cabos para garantir que não haja folgas entre ele e o cabo. Utilizar cabos de bitolas compatíveis com o prensa-cabos.

1.3.1 Aterramento Linha 3100D

Para melhor efetividade do sistema de proteção do equipamento, deve-se fixar o cabo terra no ponto indicado, dependendo do tipo de fixação do suporte (mesa ou parede). Com isso, aterrar o equipamento em algum aterramento disponível no local de instalação.

Figura 2 – Linha 3100D detalhe local fixação terra com suporte em parede

1.3.2 Aterramento Linha 3100DS

Para melhor efetividade do sistema de proteção do equipamento, deve-se fixar o cabo terra no ponto indicado. Com isso, aterrar o equipamento em algum aterramento disponível no local de instalação.

Figura 3 – Linha 3100DS detalhe local fixação terra

Recomenda-se que seja efetuado aterramento físico da caixa bem como do painel onde esteja instalado. O aterramento é fundamental para proteção contínua do operador e dos equipamentos periféricos ligados aos Indicadores 3100DS (Células de Carga, CLP, Conversores etc.);

1.3.3 Condições locais Linha 3100D

O indicador pode ser instalado em qualquer tipo de ambiente que se enquadre dentro do grau de proteção especificado para um gabinete IP69K

Não se recomenda a instalação em condições ambientais extremas, entretanto, se tais condições forem inevitáveis, verifique se estão dentro dos limites descritos para o grau IP69K, da Norma ABNT NBR IFC 60529:2005

O indicador 3100D possui uma fonte de alimentação integrada internamente e para alimentá-la, é essencial seguir as orientações de pinagem disponíveis na etiqueta interna do equipamento. Recomenda-se o uso de um cabo PP, equipado com terminais forquilha M3 crimpados nas extremidades dos fios de fase, neutro e uma linha de terra de boa qualidade, independente de outros circuitos para alimentar o indicador.

1.3.3.1 Características da fonte de Alimentação

- Tensão de Entrada: 85 à 264Vac; Frequência de Entrada: 47 a 63 Hz; 0
- 0
- Tensão de Saida: 24Vdc; 0
- Corrente Máxima de Saída: 0,625Adc; 0
- Proteção contra curto-circuito; 0
- 0 Proteção térmica;
- Proteção contra sobretensão.

Figura 4 – Vista interna do equipamento

Possíveis fontes de interferência eletromagnética tais como motores elétricos, reatores de iluminação, radiocomunicadores e outros, devem ser mantidos afastados do indicador.

Não interligar o terminal de neutro ao terminal de terra internamente à tomada, pois, embora o neutro seja aterrado na conexão secundária do transformador, nos circuitos de distribuição o neutro e o terra assumem referências de tensões distintas, devido ao desequilíbrio de cargas ligadas entre fase e neutro. Desta forma, eles devem ser considerados como circuitos distintos. A tensão entre o neutro e a terra não deve ser superior a 5V.

1.3.3.2 Características da alimentação da placa 3100D

- Alimentação: Polo negativo e o polo positivo da fonte estão conectados internamente à placa. No borne ALIMENTAÇÃO há duas posições GND reservadas para ligação do aterramento físico. Dar preferência a estes dois pontos por estarem próximos ao chassi, com baixa resistência elétrica;
- Consumo:
 - Típico 4,5W (com 8 células de carga 350Ω, todas saídas 0 acionadas, comunicando-se via seriais);
 - Máximo 12W (32 células de 350Ω, todas saídas acionadas, linhas de comunicação em curto).

1.3.3.3 Instalação do Indicador 3100D

Considere as limitações de temperatura e umidade relativa do ar na escolha do local de instalação. A faixa de temperatura de operação do indicador é de 5°C a 50°C.

O indicador pode ser instalado em superfície horizontal ou vertical, de acordo com o local destinado à aplicação. O suporte de fixação do indicador é móvel, facilitando a sua fixação através de parafusos, cujos locais podem ser verificados a seguir.

Figura 5 – Linha 3100D detalhe fixação em parede e suporte

Plano de Selagem (Lacre): O plano de selagem da Linha 3100D segue as especificações da Portaria de Aprovação de Modelo. Conforme a imagem abaixo, a selagem é realizada utilizando um selo (lacre) e arame de selagem. O arame deve ser passado através dos furos do chassi (tampa e recipiente), sendo lacrado com o selo.

ATENÇÃO: Qualquer ajuste necessário no instrumento, se faz necessário o rompimento do lacre, e deve ser realizado oficinas autorizadas exclusivamente por do Inmetro (Permissionários).

Para realizar o ajuste após o rompimento da selagem, deve-se remover o selo, desmontar a caixa e acessar o botão de ajuste. Após o ajuste, a selagem deve ser refeita conforme descrito acima e constante na portaria de aprovação de modelo.

Figura 7 - Plano de Selagem 3100D

Condições locais Linha 3100DS 1.3.4

O indicador deve ser instalado embutido no painel em ambiente externo adequado ao grau de proteção IP67. Limites de temperatura ambiente de operação: 5°C a 50°C. O interior do painel onde está instalado deve ser mantido seco e limpo. O painel frontal tolera ambientes de alta salinidade, porém convém tomar medidas para não haver contaminação dos conectores e da tampa traseira do instrumento. A família 3100DS Álfa Instrumentos possui filtros internos contra interferências eletromagnéticas. Porém, embora raramente haja danos permanentes, é possível que ocorram ruídos na medição ou erros de comunicação se houver campo

eletromagnético suficiente para saturação dos filtros. Sugere-se manter o instrumento e os cabos a ele ligados, longe de: motores elétricos, reatores de iluminação, radiotransmissores, contatores de potência e cabos de energia.

Painel de policarbonato recobre o frontal dos Indicadores da linha 3100DS e garante vedação frontal nível IP67. Acionamento do teclado por objetos como chaves de fenda ou facas poderá destruir a camada de policarbonato permitindo infiltração e corrosão do teclado. Solventes químicos podem danificar o policarbonato ou provocar descolamento do frontal. Limpar somente com água e detergente doméstico.

1.3.4.1 Características da alimentação da placa 3100DS

- Alimentação: polo negativo da fonte é ligado internamente a caixa dos Indicadores 3100DS. No borne ALIMENTAÇÃO há duas posições GND reservadas para ligação do aterramento físico. Dar preferência a estes dois pontos por estarem próximos ao chassi do dispositivo, com baixa resistência elétrica;
- Tensão de alimentação: de 8 a 32Vcc, corrente contínua.
- Consumo
 - Típico 4,5W (com 8 células de carga 350Ω, todas saídas acionadas, comunicando-se via seriais);
 - Máximo 12W (32 células de 350Ω, todas saídas acionadas, linhas de comunicação em curto). Fontes usuais: 24Vcc do ambiente de instrumentação, 12Vcc veicular, 12Vcc x 1A com transformador retificador de parede;

1.3.4.2 Instalação do Indicador 3100DS

Executar janela no painel para a instalação conforme dimensões na figura 9 e rebarbar. O aperto dos parafusos das presilhas determina a vedação do frontal. Evitar excesso para não danificar a borracha periférica.

Figura 8 - Linha 3100DS dimensões do Indicador de Pesagem

Figura 9 - Linha 3100DS recorte do painel

Plano de Selagem (Lacre): O plano de selagem da Linha 3100DS segue as especificações da Portaria de Aprovação de Modelo. Conforme a imagem abaixo, a selagem é realizada utilizando um selo (lacre), arame e parafuso de selagem. O arame deve ser passado através dos furos nas hastes metálicas do chassi e do parafuso de selagem, sendo lacrado com o selo.

ATENÇÃO: Qualquer ajuste necessário no instrumento, se faz necessário o rompimento do lacre, e deve ser realizado exclusivamente por oficinas autorizadas do Inmetro (Permissionários).

Para realizar o ajuste após o rompimento da selagem, deve-se remover o parafuso de selagem e acessar o botão de ajuste. O botão de ajuste está alinhado com o centro do furo, utilize uma chave de bornes, ou similar, para acionamento do botão. Após o ajuste, a

selagem deve ser refeita conforme descrito acima e constante na portaria de aprovação de modelo.

Figura 10 – Plano de Selagem 3100DS

1.3.5 Conexões da Linha 3100D/DS

Para Indicadores modelos 3100DS recomenda-se que as conexões às interfaces sejam efetuadas logo após a sua instalação no painel. Para os modelos fornecidos em caixa com grau de proteção IP69K (3100D), deverá ser aberta a tampa da caixa para ter acesso físico aos seus conectores na placa principal, conforme figura a seguir. É necessário que o indicador esteja desenergizado.

Figura 11 - Linha 3100D/DS identificação dos conectores

Para realizar a conexão no borne da Célula de Carga, é essencial que o cabo passe antes pelo ferrite tubular.

No Indicador 3100D, o ferrite está instalado na parte interna do equipamento. Nos casos que o cabo da célula de carga possua blindagem, esta deve ser instalada, via terminal olhal ou similar juntamente com o ponto de aterramento próximo ao borne de conexão da Célula de Carga, conforme imagem.

RECOMENTADÁVEL USO DO FERRITE PARA COMPATIBILIDADE ELETROMAGNÉTICA (EMC)

Figura 12 – Ilustração de instalação do cabo passando pelo ferrite modelo 3100D

0132-MN-03

Para uma instalação adequada com o cabo modelo 9621, devido ao seu diâmetro externo maior, recomenda-se que a decapagem seja realizada conforme as medidas indicadas na figura a seguir.

Figura 13 - Indicação de decapagem do cabo 9621

Já para os modelos com instalação em painel (3100DS) encontrase na etiqueta traseira legenda orientativa das ligações de cada borne, não é necessário desmontar a tampa traseira do dispositivo para realização das conexões.

Figura 14 – Ilustração de instalação do cabo passando pelo ferrite modelo 3100DS

Nos casos que o cabo da célula de carga possua blindagem, esta deve ser instalada, via terminal olhal ou similar no parafuso ao lado do borne de conexão da Célula de Carga, conforme imagem.

Figura 15 – Detalhe da instalação da blindagem do cabo de Célula de Carga 3100DS

Para instalação adequada utilizando o modelo de cabo 9605, recomenda-se que a decapagem seja realizada conforme as medidas indicadas na figura a seguir.

Figura 16 – Indicação de decapagem cabo 9605

1.4 Descrição do Painel Frontal

Descreve-se inicialmente os modelos 3107 que possuem todas as funções existentes na linha D e DS. Os demais modelos não possuem todas, porém o modo de operação é idêntico ao descrito para o 3107.

As teclas do painel frontal exercem múltiplas funções, conforme o contexto do modo de operação, e a sequência que são acionadas (mais detalhes na Seção 1.9 Configuração e Operação):

ZERO: pressionada uma só vez aciona a função ZERO, se o Indicador estiver no modo Peso Bruto (TARA não efetuada), peso estável e o valor de peso residual for menor que +/- 2% da capacidade do sistema. Compõe a função DESTARA quando pressionada antes e juntamente com a tecla TARA (similar à operação da tecla "Shift" Maiúscula do teclado PC). Da mesma forma, em conjunto com a tecla CNFG aciona a função DESTRAVAR as saídas retidas pela opção Trava, e em conjunto com a tecla IMP efetua a operação ZERAR TOTAL acumulado de peso. Atua como deslocamento de baixo para cima na navegação dos menus. Incrementa o dígito quando no modo entrada de valores. Escolhe opções no modo Configuração.

- TARA: pressionada uma só vez aciona a função TARA, zerando a leitura e passando ao modo Peso Líquido. Compõe a função DESTARA quando pressionada após e juntamente com a tecla ZERO (similar à operação da tecla "Shift" Maiúscula do teclado PC). Atua como deslocamento para a direita na navegação dos menus acessando a opção selecionada. Age como tecla "Enter" no processo de ajuste de peso e como captura de peso no menu FALTA-SOBRA. Avança para o próximo digito à direita quando no modo entrada de valores.
- BTO: (inexistente nos modelos 3101 e 3103) Pressionada durante 3 segundos quando se está em Peso Líquido, exibe momentaneamente o Peso Bruto no display, que pisca continuamente durante esta exibição, retornando automaticamente ao Peso Líquido após 3 segundos. Exemplo: depois de efetuada operação Tara, permite visualizar o valor Bruto sem necessitar remoção do recipiente. Atua como tecla "Escape": cancela a edição, ou sai da navegação no modo Configuração.
- CNFG: pressionada durante 3 segundos acessa os menus de Configuração nos modos Edição ou Visualização, assim como acessa a programação dos NÍVEIS de corte se a função PFN (Programação frontal do menu base) estiver habilitada. Compõe a função DESTRAVAR quando pressionada após e juntamente com a tecla ZERO (similar à operação da tecla "Shift" Maiúscula do teclado PC). Atua como deslocamento para baixo na navegação dos menus.
- IMP: comanda a impressão de etiquetas se o Peso estiver estável. Acumula o valor do peso no Totalizador interno, sob as mesmas condições. Atua como deslocamento para a esquerda na navegação dos menus. Salva o valor programado e sai do item, quando no modo Configuração.

1.4.1 Informações visuais do painel frontal

- Display: 6 dígitos com 7 segmentos + ponto decimal, para visualização do peso, totais, mensagens de configuração e ajuste. Pode-se ativar o modo ZERO FIXO para manter sempre 3 dígitos após o ponto decimal evitando indução a erros de leitura. Valores negativos indicados com auxílio de led (-) quando forem usados os 6 campos.
- Unidade de medição: selecionáveis na configuração: g (grama), kg (quilograma) ou t (tonelada).
- ZERO: no modo Peso Bruto, acende-se este led para indicar que o sistema de pesagem está vazio, estável e descontado efeito de eventuais resíduos.
- PESO: sinalizadores B ou L indicam o modo atual. Passa-se de leitura de Peso Bruto (B) para Peso Líquido (L) acionando-se o comando TARA. Retorna-se novamente ao Peso Líquido efetuandose DESTARA (ZERO+TARA). Visualização momentânea pela tecla BTO.
- IMPR, ESTÁVEL: Para que ocorra impressão é necessário que a pesagem esteja estável, o que será indicado pelo led ESTÁVEL. Nestas condições, o led IMPR piscará confirmando execução do comando imprimir.
- Tx, Rx: sinalizam a transmissão Tx ou recepção Rx de dados nas portas seriais de comunicação. Úteis para diagnóstico do estado das linhas.
- 50, 60, 70, 80, 90, 100%, >100, >>: sinalizadores da função Falta Sobra, indicam o percentual em peso, em relação ao valor Alvo programado. O led 100% aceso indica que se obteve valor igual ao Alvo +/- tolerância. Útil para enchimento manual de embalagens.
- NÍVEIS V ou 0 a 7: sinalizadores em paralelo com a saída para os respectivos acionamentos de SETPOINTS, acendendo-se enquanto energizados.

ATENÇÃO: Para efetuar as conexões nas saídas de níveis do Indicador de Pesagem, é fundamental atentar-se às características elétricas permitidas pelo equipamento. As especificações do relé são: Tensão nominal: 24Vcc/ca Corrente máxima: 0,5A

- 4/20 ABERTO: indica ruptura do loop de transmissão do sinal analógico em 4/20mA (ou 0/20 mA).
- ETH LINK: sinaliza o link da conexão ethernet, acendendo-o quando há link ativo e desligando quando link inativo.
- STATUS: Sinaliza o status do sistema em 6 cores diferentes, de acordo com o estado do sistema e/ou ação realizada.

1.5 Quadro comparativo de funcionalidades 3100D/DS:

			FU	INÇÕ	ES			PRO	тосс	DLOS	
		Falta-Sobra	Indicador de balança vazia	Acumulador de pesagens	Setpoints configuráveis	Saída Analógica 4/20mA	TRC – Transm. contínua	AA - Alfa ASCII	T02 - Transmissão 3102	RTU - Modbus RTU	EPd – Conversor de prot.**
s	3101	Х					Х	Х	Х	Х	х
ΞLO	3103					Х	Х	Х	Х	Х	Х
IODI	3104	Х	Х	Х	4		Х	Х	Х	Х	Х
ž	3107	Х	Х	Х	8	Х	Х	Х	Х	Х	Х

(**) Conversor de protocolo vendido separadamente, para:

Protocolo	Modelo do Conversor
EtherNet/IP™	mod. 2262
DeviceNet™	mod. 2202
PROFINET	mod. 2252
PROFIBUS	mod. 2242

1.6 Fluxograma de Configuração da Linha 3100D/DS

MODELOS: 3101D / 3103D / 3104D / 3107D VERSÃO DO FIRMWARE: **1.3.0**

3104 /	<u>3104/3107</u> TODOS <u>3101/3104/3107</u> <u>3104/3107</u> TODOS		OS	TODOS		TODOS		TODOS		TOD	TODOS		3103 / 3107 TODOS		TODOS								
NIVEIS ¹	VALOR	BASE	VALOR	F-S	VALOR	NÍVEIS ²	VALOR	ETH	VALOR	NET PR	VALOR	SERIAL	VALOR	INPRES	VALOR	CONTA	VALOR	ANALOG	VALOR	RELOG	VALOR	AJUSTE ⁶	VALOR
VAZIA ²	00.010	ATZ	AO	IF-S	D	PFN ¹	Н	DHCP	D	STD	STD	VER	STD	IS	PAD	HAB	D	SAN	В	DATA	dd/mm/aa	CAD	0.000
NIVEL1 ²	10.000	ZINI	D	PESO		TSP0	V	E.IP	o1 192	ADD	1	END	1	QTDI	1	PESO		P1	000.000	HORA	hh/mm/ss	DEG	1
NIVEL2 ²	20.000	TARA	S	IF-S	н	VAZIA	000.010	E.SUBN	o1 255	NPR	OFF	RS	485	PESO		HAB	Н	A1	012824	PESO		CAPAC	10.000
NIVEL3 ²	30.000	DAUT	D	BAPT	Р	NIVEL1 ²	10.000	E.ROUT	o1 192	PESO		PR	RTU	IS	EPL	QTDE	1	P2	10.009			PAJT	10.000
PESO		FIL	R2	CAPTUR		NIVEL2 ²	20.000	PESO		STD	STD	VC	115	QTDI	1	CAPTUR		A2	064154			UNIDAD	kg
		TI⁵	I	ALVO	000.000	NIVEL3 ²	30.000			ADD	1	STOP	1	IPOSH	150	ANOSTR	00.000	PESO				SPESO	r 0.0
		BIPA ⁵	D	TOL	Nº	HST	1			NPR	RTU	PESO		IPOSY	100	PESO						CPESO	r 0.0
		SENH	D	Nº	000.000	IRL	А			TIPO	TCP.SRV			FONT	1							CANCEL	N
		INT	9	SINE ⁴	D	TR1 ²	NT			SRC.PRT	10000			PESO								PESO	
		NPCB	XXXXXX	BIP	D	TR2 ²	NT			DST IP	o1 000			IS	ZPL								
		LEITD	XXXXXX	PESO		TR3 ²	NT			DST.PRT	10000			QTDI	1								
		PESO		IF-S	Н	PESO				PESO				IPOSH	150								
				BAPT	Р					STD	STD			IPOSY	100								
				CAPTUR						ADD	1			FONTA	64								
				ALVO	000.000					NPR	TRC			FONTL	25								
				TOL	PC					TIPO	TCP.SRV			SENT	Н								
				PC	0.0					SRC.PRT	10000			PESO									
				SINE ⁴	D					DST IP	o1 000												
				BIP	D					DST.PRT	10000												
				PESO						PESO													
										STD	STD												
										ADD	1												
										NPR	AA												
										TIPO	TCP.SRV	7 Navegação do MENU Escolha de parâmetro e edição do valor						ão do valor					
Para aces	sar o MENU	pression	ar por 3 s	egundos a tec	la CNFG.					SRC.PRT	10000		Utilize a	indicação	das setas o	do teclado		-	Acess	sa valor do	parâmetro		
										DST IP	o1 000			DESCE					Avan	ça digito			
Ao ser ap	resentado a	i mensage	m CONFI	G no display p	ressione a te	ecla TARA para	a acessar			DST.PRT	10000		CUREC					_	_				
o modo d	le edição ou	pressione	e a tecla C	CNFG para o m	iodo soment	e leitura.				PESO									Incre	menta valo	or do digito		
										STD	STD	ZERO SOBE						0					
Parâmetr	o SENH qua	ndo habili	itado será	á solicitado a e	ntrada da se	enha antes de	acessar			ADD	1							(+)					
o menu B	ASE.									NPR	T02		(+ (Frou				IMP	Salva	o valor co	onfigurado		
										TIPO	TCP.SRV			ESQUI	ERDA				_				
¹ Parâmet	tro PFN habi	ilitado ser	á apreser	ntado configur	ação dos NI\	/EIS inicialmei	nte.			SRC.PRT	10000								Cancel	ala adicão			
				_	-					DST IP	o1 000		→	. DIREIT	ГА					ela eulçaŭ			
² Níveis d	e 0 a 3 some	ente apres	sentados	com parâmeti	ro SINE desa	bilitado.				DST.PRT	10000												
										PESO				<u> </u>									
³ 3101D –	- Não nossui	i nívois o c	narâmet	tro SINE						STD	STD		BTC	Para s	air de qua	Iquer							
51010	1400 p0000		purumet								1		(35)	J sub-m	ienu								
4 2 1 0 1 / 2	102D - Não	noccuom	oc narân		A					NDP	TCD												
3101/3	103D - Mau	possuem	i us parali	Include In e DIP	~ .					DESO	TCP												
⁶ Menu di	isponível ap	enas se pi	ressionad	o o botão de a	ajuste por 3 s	segundos.				FESU													

1.7 Legenda e Opções da Linha 3100D/DS MODELOS: 3101 / 3103 / 3104 / 3107 VERSÃO FIRMWARE: 1.3.0

Base			F-S – Falt	a-Sobra	NET PR – P	Protocolos Ethernet	CONTA -	Contadora
ATZ – O	pções de Zero		IF-S – Hat	bilita Falta-Sobra	STD – Seleo	ciona a versão	HAB – Hat	pilita função Contadora
d	Desabilitada		d	Desabilitada	STD	Standard	D	Desabilitada
A	Modo Automá	tico	Н	Habilitada	ADV	Advanced	Н	Habilitada
0	Por operador		BAPT – V	isualização	ADD – Ende	ereço	QTDE – Q	uantidade de amostras
AO	Modo Automá	tico e por operador	b	Tipo barra	Faixa válida	de 0 a 99	Faixa válid	a de 1 a 999
	era balança na il	nicialização	Р	lipo pontual	NPR - Proto	ocolo de comunicação	CAPTUR	Captura automatica do peso das
d	Desabilitada		CAPTUR	Captura automática do	OFF	Desativado		amostras
H	Habilitada			peso alvo	RIU	Modbus RTU/IP	ANOSTR -	- Peso da amostra
	Deschilitede			Edição do peso aivo	IRC	I ransmissao Continua	Edição do	peso da amostra
0 A a	Desabilitada	avéval.	TUL - val	nação em torno do peso	AA	Alla ASCII Comunicação com Disploy do		Apológioo
Ag	Automática gr	avavei		Bereentuel	T02	Ároo	SAN Dof	- Analogica
A	Automatica		PC	Numérico	TCD	Area Madhua TCB	SAN - Rei	Peop bruto
Ua	Única vez		DC Doro	numerica	TIPO Mod		D I	Peso líquido
s	Successiva	ivavei	PC	0.0		Servidor TCP	P1 - Peso	correspondente à corrente A1
Sa	Sucessiva ara	vável	No – Num	lérico		LIDP	$\Delta 1 = Valor$	de ajuste do conversor D/A para deração
F	Editável		SINE - Si	nalizador externo	TCP CU	Cliente TCP	de corrente	nara o neso P1
Ea	Editável gravá	ivel	d	Desabilitado	SRC.PRT -	Porta Local	P2 – Peso	correspondente à corrente A2
DAUT -	Destara automá	tica	Ĥ	Habilitado	Faixa válida	de 0 a 65535	A2 – Valor	de aiuste do conversor D/A para geração
d	Desabilitada		Saída N0:	peso <= 1% peso alvo	DST.IP - Er	ndereco IP Remoto	de corrente	e para o peso P2
Ĥ	Habilitada		Saída N1:	peso ABAIXO do peso	01	Faixa válida de 0 a 255	TSA - Tipo	da Saída Analógica
FIL - Filt	ro digital		alvo - tole	rância	o2	Faixa válida de 0 a 255	L	Linear
Valar	Desmante	Acomodações 10.000	Saída N2:	peso em torno do peso	03	Faixa válida de 0 a 255	E	Espelhado
valor	Resposta	divisões	alvo +/- to	lerância	04	Faixa válida de 0 a 255		
r1	127,4ms		Saída N3:	peso ACIMA do peso alvo	DST.PRT -	Porta Remota	RELOG -	Relógio
r2	141,3ms	350ms a 950ms	+ tolerânc	ia	Faixa válida	de 0 a 65535	DATA	
r3	317,47ms		BIP – Alar	me sonoro quando o peso				Formato DIA, MËS, ANO, sendo
P1	208,2ms		alvo é atin	gido	SERIAL		01.01.00	intermitente o valor do ANO acrescido
P2	253,8ms	560ms a 2.2s	D	Desabilitado	VER – Sele	ciona a versão		de 2000
P3	382,6ms		CF	Sempre ligado fora do	STD	Standard	HORA	-
P4	615,5ms	0.7-	- •	alvo	ADV	Advanced	01.01.00	Formato HORA, MINUTO, SEGUNDO
g1	181,8ms	0,/S		Sempre ligado se o peso	END - Ende	ereço Serial 1 / Serial 3	AULOTE	
g2	403ms	11,4S	Cd	alvo esta em torno do	Faixa Valida		AJUSTE	en de desta
LN E01	122 22mg	10,75 122,22mg		PESO ALVO: 100% +/-	no – Paura	D Eletinou K5232 UU K5465	CAD - Cas	
F01	133,331115	133,33115		PID único do o poso ostá	232	R0202	0	
F02 F03	281.25ms	281 25ms	bF		PR - Protoc	rolo de comunicação	0.0	2
F04	201,23115 206.88ms	201,20113 206,88ms	ы		Serial 1 / Se	arial 3	0.00	2
F05	354 17ms	354 17ms		BIP único se o neso está	rtll	Modbus RTU	0.0000	4
F06	266 67ms	266 67ms	Bd	em torno do PESO	110	Comunicação com o conversor	DEG – Dec	- arau
F07	350 00ms	350 00ms	20	ALVO: 100% +/- TOI	FPd	PROFIBUS-DP DeviceNet	1	jida
F08	400.00ms	400 00ms			LIG	EtherNet/IP ou PROFINET	2	
F09	518 75ms	518 75ms	NIVEIS		TrC	Transmissão Continua	5	
F10	84.38ms	84.38ms	PFN – Pro	ogramação frontal dos	AA	ALFA ASCII	10	DEGRAU 1 com ZERO FIXO
F11	106.25ms	106.25ms	níveis	gramação nomai doo		Comunicação com Display de	20	DEGRAU 2 com ZERO FIXO
F12	147 92ms	147 92ms	D	Desabilitada	T02	Área	50	DEGRAU 5 com ZERO FIXO
F13	150.00ms	150.00ms	Ĥ	Habilitada	VC – Veloci	dade de comunicação (bps)	CAPAC -	Capacidade máxima de pesagem
oG1	1750ms	2,8s	TSP0 – Se	et point 0	Serial 1 / Se	erial 3	PAJT – Pe	so de ajuste
oG2	1784ms	3,7s	V	Vazia	4.8	4.800	UNIDAD -	Unidade de peso
IS – Imp	ressoras Seriais		0	NIVEL 0	9.6	9.600	t	Tonelada
PAd	Matriciais		VAZIA ou	NIVEL 0	19.2	19.200	kg	Quilograma
EPL	Código de bar	ras padrão EPL2	NIVEL 1	.7 – Edição	38.4	38.400	g	Grama
ZPL	Padrão ZPL2		HIST – Va	lor de histerese	57.6	57.600	SPESO - 0	Captura do valor sem peso aplicado
QTDI – C	Quantidade de ir	npressões	Faixa válio	da de 1 a 99% em relação	115	115.200	r 0.0	Indicador calibrando a balança SEM
Faixa vá	lida de 1 a 9		ao valor d	e NIVEL	230	230.400	1 0.0	PESO
TI – Tecl	a IMP		IRL – Lógi	ica de trabalho	STOP – Sto	p bits, aplicável apenas ao protocolo	CPESO - 0	Captura do valor com peso aplicado
A	Acumulação c	le peso	А	Normalmente aberta	Modbus R1	U	r 0.0	Indicador calibrando a balança COM
I	impressão da	pesagem		(NA)	1	Utiliza 1 stop bit (tamanho total da	CANOFI	PESU Canada a aiusta da successoriata
AI	Acumulação d	le peso e impressao de	F	Normalmente fechada		palavra 10 bits)	CANCEL -	- Cancela o ajuste de peso corrente
	pesagem	o opumulopão do poor		(INF)	2	ounza z stop bits (tamanno total	5	Deporte o concelamento
d A - A	Name Sonoro d	e acumulação do peso	configures	va o Selpoini o se		ua palavia 11 DIIS)	IN	Descana o cancelamento
ц	Habilitada		NIIVEL 0		INPRES -	moressão Serial	FRROX	
SENHA	- Senha de ace	SSO	t	Trava	IS – Impress	soras Seriais	Código do	erro, causa e acão corretiva:
d	Desabilitada		nt	Não trava	PAd	Matriciais	nAn	Aiuste inválido ou impreciso
Ĥ	Habilitada		TR17 - 1	trava 17	EPL	Código de barras padrão EPL2		Peso sobre a balanca está instável
INT - Int	ensidade do bril	ho	t	Trava	ZPL	Padrão ZPL2		durante o estágio de SEM PESO.
0	Mínima		nt	Não trava	QTDI – Qua	intidade de impressões	SP	Acão corretiva: Verificar fixação dos
15	Máxima				Faixa válida	de 1 a 9		cabos das células, caixas de junção e
NPCB	Número de sé	rie da PCB do indicador	ETH - Eth	ernet	IPOSH - Im	pressão posição horizontal		estrutura da plataforma.
	Leitura direta	dos dados lidos pelo	DHCP - IF	^o dinâmico	Configuraçã	o da posição horizontal dos dados		Peso sobre a balança está instável
LEITD	conversor A/D)	D	Desabilitado	de impressã	io (Protocolos EPL e ZPL)		durante o estágio COM PESO.
			Н	Habilitado	IPOSY – Im	pressão posição vertical	CP	Ação corretiva: Verificar fixação dos
			E.IP – End	dereço IP	Configuraçã	io da posição vertical dos dados de		cabos das células, caixas de junção e
			01	Faixa válida de 0 a 255	impressão (Protocolos EPL e ZPL)		estrutura da plataforma.
			02	Faixa válida de 0 a 255	FONT – For	nte protocolo EPL	Gen	Erro Genérico
			03	Faixa válida de 0 a 255	Faixa válida	de 1 a 5		
			04	Faixa valida de 0 a 255	FONTA – C	onfigura altura da fonte ZPL		
			E.SUBN -	Mascara de Sub-rede	Faixa valida	de 20 a 999		
			01	Faixa valida de 0 à 255 Faixa válida de 0 à 255	FONTL - C	do 20 o 900		
			02	r aixa vallua de 0 a 255 Faixa válida do 0 o 255	SENT Origi	nue 20 d 999 Antação da impressão 70		
			03	Faixa valida do 0 o 255		Horizontal		
			FROUT	Endereco Gateway	r	Vertical		
			01	Faixa válida de 0 a 255				
			02	Faixa válida de 0 a 255				
			03	Faixa válida de 0 a 255				
			04	Faixa válida de 0 a 255				
			. .					

1.8 Diagrama de Conexões Linha 3100D/DS

Figura 17 – Diagrama de conexões elétricas da família 3100D/DS

1.9 Configuração e Operação

Para acessar a configuração é necessário que o indicador esteja no modo de indicação de peso. O operador deve manter pressionada a tecla <CNFG> por 3 segundos, será mostrada a seguinte mensagem:

Figura 18 – Apresentação da mensagem CONFIG no display

A partir deste estágio, as teclas assumem o papel de navegação intuitiva, com as seguintes funções:

Onde há o símbolo '+', pressionar as teclas na sequência Figura 15 – Navegação intuitiva das funções

Há uma tecla interna de ajuste de pesagem <BOTÃO DE AJUSTE> para acessar o menu de ajuste e modificação de parâmetros com significado metrológico. Para acessar esta tecla é necessário romperse o lacre para abertura da tampa traseira.

Observação: O termo "Calibração" foi substituído pelo termo "Ajuste" para que todos os produtos Alfa Instrumentos Eletrônicos estejam com as suas terminologias adequadas ao VIM – Vocabulário Internacional de Metrologia.

As funções que não têm significado metrológico podem ser modificadas sem acionamento da tecla <BOTÃO DE AJUSTE> e, portanto, com o lacre inviolado.

Quando é energizado, o indicador realiza um autoteste de suas funções internas. Durante esta fase é indicado no mostrador a VERSÃO DE PROGRAMA.

Adicionalmente, o indicador é fornecido com senha para proteger de alterações indevidas por operadores que não estejam autorizados, porém será permitido navegar sem senha no modo SOMENTE LEITURA, pelo menu e visualizar toda a configuração.

1.10 Funções de Pesagem

As funções básicas para operações de Pesagem podem ser configuradas por intervenção manual pelas teclas, através de um dos protocolos de comunicação serial disponíveis, Alfa Web Monitor ou ainda pelo acionamento de entradas de COMANDO REMOTO, por exemplo, em caixas à prova de explosão.

2 Interface BASE

A seguir são descritas as funções da interface BASE.

DAGE	Ormálmune a interárez DAGE
BASE	Configuração Interface BASE
ATZ	Opções de zero
ZINI	Zera balança na inicialização
TARA	Função tara
DAUT	Destara automática
FIL	Filtro digital
IS	Impressora
QTDI	Quantidade de impressões
TI	Tecla IMP
BIPA	Alarme sonoro de acumulação do peso
SENH	Senha do usuário
INT	Intensidade do brilho do display
NPCB	Número de série da PCB do indicador
LEITD	Grandeza direta dos dados lidos pelo conversor A/D

2.1 Função Zero Automático (ATZ)

ATZ	Opções de zero
d	Desabilitada
A	Modo AUTOMÁTICO
0	Por OPERADOR
AO	Modo AUTOMÁTICO e por OPERADOR

O comando ZERO obrigará a medição a ser igual a zero. Pode ser acionado:

- Manualmente: pela tecla ZERO painel, ou por Comando Remoto, ou via protocolo de comunicação.
- Automaticamente configurando-se a função ATZ = A.

Condições necessárias para que o comando seja executado manualmente ou automaticamente:

- A balança esteja vazia.
- Indicando peso BRUTO.
- Peso estável, encontrando-se simultaneamente iluminados os indicadores [BRUTO] e [ESTÁVEL].
- Peso dentro de ± 2% da capacidade máxima programada, em torno do valor definido como BALANÇA VAZIA na etapa de ajuste "SEM PESO".

A função ATZ atualiza o novo ZERO do indicador de modo automático e/ou sob comando do operador (manual), compensando o efeito do acúmulo de resíduos sobre a balança ou lentas derivas do sistema de pesagem. Sempre que habilitada, a função ATZ grava cada novo valor de ZERO do indicador ciclicamente em memória não volátil, garantindo que ao ligar o equipamento, o último valor de zero seja recuperado.

No modo AUTOMÁTICO a BUSCA DE ZERO ocorre para valores de peso até $\pm 2\%$ da capacidade máxima programada, desde que o peso tenha se mantido estável, ou seja, variação menor que 0,5 divisão/segundo, por ao menos 5 segundos.

2.2 Função Zero Inicial (ZINI)

Efetua operação de "zero" automático ao iniciar o equipamento, de forma análoga ao item anterior.

ZINI	Zera a balança na inicialização
d	Desabilitada
Н	Habilitada

2.3 Função Tara (TARA)

A operação de TARA tem a função de descontar o peso que estiver sobre a balança, zerando a indicação no mostrador, acionando o sinalizador [LÍQUIDO] e apagando o [BRUTO].

Para que a função seja executada é necessário que: esteja habilitado, o peso sobre a balança estável, diferente de SOBRECARGA / SATURAÇÃO, indicando um peso LÍQUIDO ou peso BRUTO maior que ZERO.

A função tara é ativada pressionando a tecla <TARA>, por comando TARA REMOTO ou via protocolo de comunicação. Através da função de TARA é possível a indicação de peso LÍQUIDO negativo se houver remoção de material.

TARA	Modo de visualização da função TARA
d	Desabilitada
А	Automática
Ag	Automática gravável
U	Única vez
Ug	Única vez, salvando o valor da TARA
S	Modo sucessivo
Sg	Modo sucessivo, salvando valor da TARA
E	Editável
Eg	Editável, salvando valor de TARA

As funções indicadas em suas siglas na tabela acima com "g" ao final, indicam que o resultado da operação de TARA é gravado na memória não volátil, evitando que o valor da TARA seja perdido caso falte energia.

Para o modo de tara ÚNICA, quando efetuada a tara, somente será possível efetuar nova tara ao realizar DESTARA no equipamento, pressionando a sequência de teclas ZERO e TARA em seguida (mantendo a tecla ZERO pressionada no ato de pressionar TARA).

No modo SUCESSIVO, a TARA pode ser usada para adição/subtração de pesos sem necessidade de descarregar o conteúdo da balança.

A função de TARA EDITÁVEL pode ser habilitada, por exemplo, para verificar o peso líquido contido em recipiente cujo peso seja um valor conhecido, o qual deve ser editado pelo operador antes da pesagem. Se o valor editado for válido, automaticamente o indicador atualiza o mostrador com base no novo valor de TARA e acende o sinalizador [LÍQUIDO]. Neste modo, ao pressionar a tecla tara, é exibido campo no display que permite ao operador digitar o valor de TARA desejado, bastando selecionar o dígito do peso utilizando a tecla TARA e variando o valor do dígito utilizando a tecla ZERO. Uma vez concluída a seleção do valor de TARA desejado, basta pressionar a tecla IMP para confirmar o valor, onde o sistema passará a assumir esse valor como a TARA do sistema. Para cancelar a operação, estando em seleção de valor, basta pressionar a tecla BTO. Esta seleção de valores ocorre de forma análoga à descrita nas instruções de utilização presentes no fluxograma inicial deste manual.

2.4 Função Bruto (BTO) Disponível: 3104 e 3107

Utilizada em aplicações onde é necessário verificar o peso bruto aplicado à balança, sem necessidade de esvaziá-la ou retirar o peso líquido.

Para que a função seja executada é necessário que a indicação da balança esteja em peso LÍQUIDO e diferente de SOBRECARGA / SATURAÇÃO.

Para acionar a função BRUTO, mantenha pressionada a tecla <BTO> por 3 segundos, e após ser reconhecida, o indicador [BRUTO] será iluminado e o valor do peso BRUTO será mostrado, piscando, durante 3 segundos, após o qual retorna a indicação do peso LÍQUIDO.

2.5 Função Destara Automático (DAUT)

A função DESTARA pode ser executada a qualquer momento, independente das condições de pesagem da balança, é ativada pressionando <ZERO> depois <TARA> sem soltar a primeira, por comandos: ZERO REMOTO e TARA REMOTO ou via protocolo de comunicação.

A função DAUT destara automaticamente o indicador quando o PESO LÍQUIDO ficar negativo.

DAUT	Destara automática
d	Desabilitada
Н	Habilitada

2.6 Filtros Digitais (FIL)

O sinal das células de carga representa o peso aplicado à plataforma de pesagem bem como o equivalente das vibrações mecânicas da carga e/ou da estrutura e oscilações decorrentes do impacto do peso contra a balança. O indicador possui 25 opções de filtros digitais préprogramados, atendendo às seguintes situações:

• Necessidade de rapidez na resposta do cálculo do peso;

- Ambientes com vibração mecânica;
- Plataformas.

Deve-se utilizar a correta opção de filtro digital para cada aplicação de pesagem, considerando-se o tipo do produto a ser pesado e as condições do local de pesagem.

FIL	Resposta ao degrau	Acomodação em 10.000 divisões
R1	127,4ms	
R2	141,3ms	350ms a 950ms
R3	317,4ms	
P1	208,2ms	
P2	253,8ms	560mc a 2 2c
P3	382,6ms	5001115 a 2,25
P4	615,5ms	
G1	181,8ms	6,7s
G2	403ms	11,4s
LN	803,3ms	16,7s
F01	133,33ms	133,33ms
F02	177,08ms	177,08ms
F03	281,25ms	281,25ms
F04	296,88ms	296,88ms
F05	354,17ms	354,17ms
F06	266,67ms	266,67ms
F07	350,00ms	350,00ms
F08	400,00ms	400,00ms
F09	518,75ms	518,75ms
F10	84,38ms	84,38ms
F11	106,25ms	106,25ms
F12	147,92ms	147,92ms
F13	150,00ms	150,00ms
OG1	1750ms	2,8s
OG2	1784ms	3,7s

Resposta ao degrau é o tempo considerado para uma balança vazia detectar e apresentar corretamente um peso aplicado subitamente. O tempo de acomodação é o tempo necessário para que o peso da situação anterior seja disponibilizado com menos de 1 divisão de instabilidade.

Abaixo citamos propostas de aplicação para alguns filtros e gráficos demonstrando a resposta deles.

FILTROS	Proposta de Aplicação
R1, R2, R3	Balança de bancada, sistema de dosagem
P1, P2, P3, P4	Pesagem de silo, tanque, balança de piso
G1, G2, LN, L01, L02, oG1, oG2	Filtros com longa resposta ao degrau, ótimos para estabilidade em ambientes ruidosos e pesagens que não exigem respostas imediatas como pesagem de carga viva
F01 ao F13	Filtros com rápida resposta ao degrau, pesagem com ambiente controlado

Cada ponto no gráfico representa o intervalo de 4,2ms.

0132-MN-03

2.7 Tecla Impressão / Acumulado (TI)

A tecla <IMP> do indicador compartilha duas funções: impressão e/ou acumulação de peso.

TI	Modo de operação da tecla IMP	
A	Acumulação de peso	
1	Impressão da pesagem	
AI	Acumulação de peso e impressão da pesagem	

Quando configurada para a função I ou AI e o indicador estiver no modo PESAGEM, serão impressas as informações descritas na Seção 2.6 Saída para Impressão Serial - sempre que a tecla <IMP> for pressionada. Para que sejam impressas as informações do TOTAL ACUMULADO, é necessário que o indicador esteja no modo de VISUALIZAÇÃO DO TOTAL sendo impressas as informações descritas no próximo item.

2.8 Acumulações

Disponível: 3104 e 3107

Funções: ACUMULA / MOSTRA TOTAL / ZERAR TOTAL / IMPRESSÃO.

A operação ACUMULA tem a função de efetuar o acúmulo dos pesos depositados na balança. Opera em modo NÃO SUCESSIVO, e a balança deve ser esvaziada antes de possibilitar novo acúmulo de peso, sendo referência de balança vazia apenas um dos seguintes valores:

- Valor programado no NÍVEL DE CORTE VAZIA se o SETPOINTO estiver configurado para operar como VAZIA.
- Peso aplicado à balança inferior a 1% do valor da CAPACIDADE MÁXIMA se o SETPOINTO estiver configurado para operar como NIVEL 0 ou se as saídas de NÍVEIS estiverem direcionadas para a função FALTA-SOBRA.
- Peso aplicado à balança inferior a 1% do valor do PESO ALVO caso a função FALTA-SOBRA esteja ativa.
- Para ocorrer a acumulação do peso é necessário que o peso sobre a balança esteja estável, indicando uma pesagem diferente de ZERO ou SOBRECARGA/SATURAÇÃO e que o total acumulado não tenha excedido a grandeza 99999999, independente do ponto decimal.

A função ACUMULA é ativada pressionando a tecla <IMP>, do comando REMOTO ACU ou via protocolo de comunicação e sempre que reconhecida, a mensagem "ACU" pisca 3 vezes no mostrador.

O total acumulado não pode exceder uma grandeza de 8 dígitos, independentemente da posição do ponto decimal. Caso ocorra, não haverá o incremento do valor totalizado.

Após ser realizado o acúmulo, o indicador atualiza o total de acumulações realizadas e efetua uma média das últimas acumulações, desde a última operação de ZERAR TOTAL.

Os dados da acumulação podem ser visualizados pressionando simultaneamente as teclas <CNFG> e <IMP>, que configura o indicador no modo visualização. São indicados no mostrador em 6 etapas:

(1ª) TOTAL	Mensagem indicando que terá início a visualização do total acumulado
(2ª) XX	Dois dígitos mais significativos do total acumulado, independente do ponto decimal
(3ª) XXXXXX	Seis dígitos menos significativos do total acumulado, independente do ponto decimal
(4 ^a) NYYYYY	Total de acumulações realizadas, limitado a 32000
(5ª) PD	Mensagem indicando que terá início a visualização da média do total acumulado
(6 ^a) ZZZZZZ	Valor da média do total acumulado

Os dados acima também podem ser obtidos via protocolo de comunicação.

Se o total de acumulações for 999, a próxima acumulação válida, limpa tanto o total de acumulações como a média do total acumulado, porém atualiza o total acumulado.

Quando em modo visualização do total acumulado, o indicador desabilita novas acumulações.

Apenas em modo visualização é possível realizar a impressão dos dados de acumulação no seguinte formato: A:XXXXXXXXuu M:ZZZZZuu QT:YYYYY dd/mm/aa hh:mm:ss, pressionando a tecla <IMP>, sendo:

A:XXXXXXXXX A: total acumulado

	XXXXXXXX: valor do total acumulado, podendo ser adicionado a este campo o sinal de PONTO DECIMAL de acordo com a quantidade de CASAS DECIMAIS especificada pelo operador uu: unidade de pesagem configurada pelo operador, g, kg ou t
M:ZZZZZuu	M: média do total acumulado ZZZZZ: valor da média do total acumulado, podendo ser adicionado a este campo o sinal de PONTO DECIMAL de acordo com a quantidade de CASAS DECIMAIS especificadas pelo operador uu: unidade de pesagem configurada pelo operador, g, kg ou t
QT: YYYYY	QT: quantidade de acumulações YYYYY – valor da quantidade de acumulações
dd/mm/aa	Data no instante da impressão, no formato dia/mês/ano
hh:mm:ss	Hora no instante da impressão, no formato hora/minuto/segundo

Para ZERAR os dados da acumulação, estando o indicador no modo VISUALIZAÇÃO, pressionar as teclas <ZERO> e <IMP> em seguida, sem soltar a tecla <ZERO>, até que sejam mostradas as 6 etapas acima com todos os valores numéricos iguais a ZERO. No modo VISUALIZAÇÃO, para retornar à indicação de peso, pressionar a tecla <BTO>.

2.9 BIP (BIPA)

Disponível: 3104 e 3107

Emite um BIP quando ocorre acumulação de peso.

BIPA	Alarme de acumulação do peso
d	Desabilitado
Н	Habilitado

2.10 Senha do Usuário (SENH)

Para proteção dos parâmetros, a SENHA DO USUÁRIO deve estar habilitada. A SENHA é fixa e seu valor é **010905**, devendo ser divulgada somente aos operadores que estiverem capacitados e autorizados a alterar parâmetros do indicador. Com a SENHA habilitada, os operadores, sem conhecimento das senhas de configuração, terão o acesso às configurações no modo SOMENTE LEITURA apenas.

SENH	Configuração da SENHA do USUÁRIO
d	Desabilitado
Н	Habilitado

2.11 Controle da Intensidade do Brilho do Display (INT)

Parâmetro para o controle da intensidade do brilho display.

INT Controle da intensidade do brilho. 0 - Mínimo e 15 - Máximo

2.12 Número de série da PCB (NPCB)

Para efeitos de diagnóstico e rastreabilidade, o operador tem acesso à visualização do NUMERO DE SÉRIE da PCB do indicador a qualquer momento. Para acessar o número de série, o usuário deverá pressionar a tecla <CNFG> por 3 segundos, navegar até o menu <BASE> e em seguida ir até a opção <NPCB>. Esta informação não pode ser alterada pelo operador. Vale ressaltar que não necessariamente o número de série da PCB deve ser o mesmo número de série da etiqueta do indicador de pesagem.

NPCB Número de série da PCB do indicador

2.13 Leitura Direta do AD (LEITD)

Para efeitos de diagnóstico, o indicador possibilita a leitura direta da informação lida pelo conversor A/D, relativa ao peso que está sendo aplicado nas células de carga. Este procedimento é útil sempre que houver a necessidade de se verificar o comportamento do conjunto células de carga - indicador.

LEITD	Grandeza DIRETA dos dados lidos pelo conversor A/D, na faixa
	de 000000 a FFFFFF, base numérica HEXADECIMAL

3 Indicação Falta-Sobra (F-S) Disponível: 3104 e 3107

O indicador possui uma interface programável para aplicações de VERIFICAÇÃO DE PESO, baseada na informação de um peso alvo. O modo de operação do FALTA-SOBRA possui diversas parametrizações que serão abordadas a seguir:

F-S	Função Falta-Sobra
IF-S	Habilitação
BAPT	Visualização barra ou ponto móvel
CAPTUR	Captura automática do peso alvo
ALVO	Edição do peso alvo
TOL	Tolerância em torno do peso alvo, percentual ou numérica (PC ou No)
SINE	Sinalizador externo
BIP	Alerta sonoro guando o peso alvo é atingido

Para que a função FALTA-SOBRA esteja disponível, é preciso que sua interface seja habilitada.

IF-S	Habilita função Falta-Sobra
d	Desabilitada
Н	Habilitada

Esta função obedece à indicação de peso do mostrador, independentemente de ser no modo BRUTO ou LÍQUIDO. Há 8 LEDs para indicar percentualmente as faixas de peso percorridas e/ou atingidas pelo peso aplicado à balança. Os LEDs de faixa percentual de 50 a 90% se localizam na parte superior, acendem na cor AMARELA e indicam que o peso aplicado à balança está abaixo do peso alvo, ou seja, FALTA material para se atingir o peso alvo.

O LED central acende na cor VERDE e indica que o peso aplicado à balança está dentro da faixa válida do peso alvo, ou seja, 100% +/tolerância definida para esta operação.

Os LEDs >100+t e >> se localizam na parte superior, acendem na cor VERMELHA e indicam que o peso aplicado à balança está acima do peso alvo, ou seja, SOBRA material em relação ao peso alvo, porém >> indica que é maior que 10% do alvo + tolerância.

O indicador pode operar no modo BARRA (BARGRAPH), com todos os LEDs indicando a faixa de peso percorrida ou no modo PONTUAL com apenas um único LED móvel indicando o percentual de peso atingido.

Esta configuração pode ser utilizada para acionar sinalizador luminoso externo ou comando automático para rejeitar ou aceitar peso do produto aplicado à balança.

O modelo 3101 não possui sinalização externa pois, não apresenta saída de níveis.

BAPT	Visualização da sinalização
b	Tipo BARRA
Р	Tipo PONTUAL

O peso alvo pode ser CAPTURADO automaticamente pelo indicador, no sub-menu CAPTUR, ou EDITADO no sub-menu ALVO, mesmo após sua captura, sendo que a variação mínima pode ser de uma unidade, independentemente do valor definido no parâmetro DEGRAU.

CAPTUR	Captura automática do peso alvo	
	Fase de CAPTURA do peso alvo	
ALVO	Edição do peso alvo	

A TOLERÂNCIA da variação em torno do peso alvo pode ser expresso em uma grandeza NUMERICA ou PERCENTUAL, neste caso, com precisão de uma casa decimal.

TOL	Tolerância em trono do peso alvo	
PC	Percentual	
No	Numérica	

Não é possível a edição dos dois tipos de TOLERÂNCIA, ou seja, só é permitida a edição do tipo de tolerância selecionado. Supondo peso alvo igual a 1000 kg, com tolerância percentual de 1,5%, a faixa de peso válida será de 985 kg (-1,5%) a 1015 kg (+1,5%). Se a tolerância for numérica e igual a 25, a faixa passa a ser de 975 kg (-25) a 1025 kg (+25).

É possível associar a atuação das saídas de NÍVEL DE CORTE ao funcionamento da interface FALTA-SOBRA. Neste caso as saídas não mais serão acionadas de acordo com os valores programados na interface NÍVEIS, passando os relés a operarem no modo LÓGICA DIRETA, ou seja, NORMALMENTE ABERTOS, sem considerar a HISTERESE e TRAVAS, sendo as saídas acionadas individualmente nas seguintes condições de peso aplicado:

- NÍVEL 0: abaixo de 1% do peso alvo, o que caracteriza balança vazia.
- NÍVEL 1: ABAIXO do peso alvo tolerância.
- NÍVEL 2: FAIXA VÁLIDA: peso alvo +/- tolerância.
- NÍVEL 3: ACIMA do peso alvo + tolerância.

SINE	Sinalizador externo
d	Desabilitado
Н	Habilitado, ativando individualmente as saídas de NÍVEIS: - Saída N0: peso <= 1% do peso alvo - Saída N1: peso ABAIXO do peso alvo – tolerância - Saída N2: peso em torno do peso alvo +/- tolerância - Saída N3: peso ACIMA do peso alvo + tolerância

Esta configuração pode ser utilizada para acionar um sinalizador luminoso externo ou comando automático para rejeitar ou aceitar peso do produto aplicado à balança.

O indicador pode ser configurado para acionar um ALARME SONORO de 1 segundo ao atingir o peso alvo. Este recurso é muito útil em aplicações que requeiram alta produtividade, pois dispensa a necessidade de o operador verificar a sinalização visual para verificar se o peso aplicado à balança está dentro do limite desejado. Entretanto há aplicações onde é necessário exatamente o oposto, ou seja, manter o ALARME SONORO sempre ativo ou desligado enquanto o peso sobre a balança estiver abaixo ou acima do peso alvo.

Alarme sonoro quando o peso alvo é atingido
Desabilitada
Sempre LIGADO se o peso atual está ACIMA ou ABAIXO do PESO ALVO
Sempre LIGADO se o peso atual está em torno do PESO ALVO: 100% +/-
TOL
BIP único se o peso atual está ACIMA ou ABAIXO do PESO ALVO
BIP único se o peso atual está em torno do PESO ALVO: 100% +/- TOL

Quando o parâmetro BIPA (menu BASE) estiver habilitado, as opções CF e Cd assumirão as mesmas características de funcionamento de bF e bd, respectivamente.

4 Saídas de Níveis (NIVEIS)

Disponível: 3104 e 3107

Em sistemas automáticos de pesagem, muitas vezes é necessário acionar comandos quando o peso atinge valores pré-determinados. Estes valores são chamados SET-POINTS ou NÍVEIS DE CORTE.

NÍVEIS	3104D/DS	3107D/DS	
PFN	Programação frontal dos níveis (acesso direto ao menu de		
	nív	eis)	
TSP0	Setpoint 0		
VAZIA OU NÍVEL 0	Seleção de modo		
NÍVEL X	Edição dos níveis 1 a 3	Edição dos níveis 1 a 7	
HST	Valor de histerese		
IRL	Lógica do trabalho		
TR 0	Configuração da TRAVA 0, se setpoint 0 for configurado		
	para operar como NIVEL 0		
TR X	Modo trava, saídas 1 a 3	Modo trava, saídas 1 a 7	

O indicador possui saídas digitais programáveis para sinalizar quando determinado valor de peso foi atingido com tempo de resposta inferior a 17ms. Para agilizar a produção, as saídas podem ser programadas pelo painel frontal (desde que ativado o sub-menu PFN), sem a necessidade de acessar os menus de configuração.

Uma destas saídas pode ser programada para operar exclusivamente na sinalização de uma balança fisicamente vazia, sem o recurso da função TRAVA, ou fazer o papel do quarto NÍVEL DE CORTE (NÍVEL 0), com o recurso da função TRAVA 0.

PFN	Programação fronta	al dos Níveis (ac	esso direto ao n	nenu de níveis)
Н	Habilitada			
d	Desabilitada			
TSP 0	Nível 0	Vazia ou	Nível 0	
V	Vazia	3104	Nível 13	Edição
0	Nível 0	3107	Nível 17	

Todas as saídas obedecem a indicação de peso do mostrador, independentemente de ser no modo BRUTO ou LÍQUIDO. Os valores de

atuação, quando definidos localmente, são armazenados na memória não volátil, e podem ter variação mínima de um dígito do display.

À medida que os níveis são atingidos, suas saídas são acionadas simultaneamente. Por exemplo, se o peso aplicado à balança for 5000 kg e NIVEL 1 programado para 1000 kg, NIVEL 2 para 2000 kg e NIVEL 3 para 3000 kg, as três saídas estarão ativadas.

Os níveis de corte possuem o recurso de HISTERESE (diferença de valor entre ativar/desativar), ajustável de 1 a 99%, que atua de forma idêntica nos NÍVEIS DE CORTE. É uma função útil em ambientes onde haja vibração na balança ou oscilação no valor do peso devido à sua própria movimentação, podendo causar a ativação intermitente das saídas quando o peso estiver nas vizinhanças do valor de NÍVEL programado.

Por exemplo, ao programar um valor de HISTERESE em 2%, com um NÍVEL DE CORTE de 100 kg, a respectiva saída será ativada quando o peso atingir este valor, porém só voltará a desativar quando estiver abaixo de 98 kg.

HST	Valor de histerese
HSt	Faixa válida de 1 a 99% em relação ao valor do NÍVEL

O recurso de INVERSÃO permite que as saídas de nível de corte iniciem ativas e sejam desativadas ao atingir o valor programado, sendo um recurso útil para controle de segurança contra falhas em atuadores. IMPORTANTE: a INVERSÃO atua de forma idêntica nos níveis de corte.

IRL	Lógica de trabalho
А	Aberta
F	Fechada

A função TRAVA, quando habilitada, faz com que a saída específica, uma vez ativa, não desative até ser comandada a função de DESTRAVA (pressionar tecla <ZERO> seguida de <CONFIG>, sem soltar a tecla <ZERO> até o acesso à função), mesmo que o peso fique abaixo do valor programado. Atua em todos os níveis simultaneamente.

TR 0	TRAVA 0, se SETPOINT 0 configurado para operar como NÍVEL 0
t	Trava
nt	Não trava

3104D/DS		31	3107D/DS	
TR 13	TRAVA 13	TR 17	TRAVA 17	
t	Trava	t	Trava	
nt	Não trava	nt	Não trava	

Com sistemas em rede, as saídas de nível de corte são muito úteis em razão do baixo tempo de resposta (<17ms), podendo ser diretamente aproveitadas para acionar atuadores ou roteadas pelo mestre da rede (CLP) através de suas saídas. O estado de todos os níveis de corte é sinalizado visualmente no painel frontal do indicador e sempre que seu LED correspondente estiver aceso significa que o nível em questão está eletricamente ativo e uma vez apagado, significa que o nível está eletricamente desativado.

ATENÇÃO: Para efetuar as conexões nas saídas de níveis do Indicador de Pesagem, é fundamental atentar-se às características elétricas permitidas pelo equipamento. As especificações do relé são: **Tensão nominal: 24Vcc/ca**

Corrente máxima: 0,5A

Opcionalmente pode-se interligar o indicador com a Caixa de Relés Mod. 4424 da Alfa Instrumentos, que possui fonte própria e relés de 1 polo reversível, com supressores de faiscamento, tanto nas entradas (diodos de flyback), quanto nas saídas (supressor RC) e indicação visual externa dos relés ativados.

5 Interface Ethernet (ETH)

Todos os modelos de indicadores possuem uma porta de comunicação no padrão Ethernet. Esta porta pode ser utilizada tanto para acessar o Alfa Web Monitor quanto para estabelecer comunicações TCP/IP. As configurações do módulo são realizadas tanto pelo item do menu ETH quanto pelo item NET PR.

O item do menu ETH é o responsável por determinar e configurar as configurações de IP, máscara de sub-rede e gateway do indicador.

A alocação de IP pode ser feita de duas maneiras, através do parâmetro DHCP disponível no equipamento:

 Estática: neste modo deve-se introduzir manualmente o endereço IP local, máscara de sub-rede e gateway. Neste caso, basta definir o valor de DHCP como desabilitado (D) e configurar manualmente os parâmetros;

 Dinâmica: neste modo, a cada inicialização do indicador será feita uma requisição de IP via protocolo DHCP, sendo responsabilidade da rede alocar dinamicamente um IP para o dispositivo. Para isto, basta habilitar o parâmetro DHCP que os demais campos serão preenchidos automaticamente após o tempo de alocação.

Todos os indicadores são configurados conforme o seguinte padrão de fábrica:

Alocação de IP	Estático
IP local	192.168.0.11
Máscara de sub-rede	255.255.255.0
Gateway	192.168.0.1

Além das configurações via navegação no menu do equipamento, estes parâmetros podem ser redefinidos através das configurações no Alfa Web Monitor.

6 Protocolos de Rede (NET PR)

Através da porta de comunicação no padrão ethernet disponível no indicador, é possível estabelecer comunicações TCP/IP. Os protocolos disponíveis para comunicação TCP/IP são: AA, Modbus-RTU over TCP/IP (também conhecido como Modbus-RTU/IP), Modbus TCP, TRC e T02.

Para os protocolos listados, assim como ocorre na interface serial, há a possibilidade de atuar no modo normal (STD) ou avançado (ADV). A diferença básica entre os dois modos está na possibilidade de visualização de mais informações junto ao protocolo quando atuando no modo ADV como, por exemplo, unidade (g, kg e t) e indicação do sistema de pesagem em ZERO. Este parâmetro pode ser ajustado através do item STD.

O indicador possui 3 modos de operação configuráveis através do parâmetro TIPO:

- Servidor TCP (TCP.SRV): neste modo o indicador atua como um servidor, sendo equivalente a um dispositivo escravo. Este servidor suporta conexão com apenas um cliente por vez, com o qual o indicador irá destinar suas mensagens enquanto estiver conectado;
- Cliente TCP (TCP.CLI): neste modo o indicador atua como um cliente, sendo equivalente a um dispositivo mestre. É necessário fornecer o IP e porta remotos referentes ao servidor no qual o indicador tentará se conectar. Como o indicador é quem deve tomar a iniciativa da comunicação, os protocolos Modbus-RTU/IP e AA não funcionarão neste modo;
- UDP (UDP): neste modo a troca de mensagens é feita via pacotes UDP, não havendo conexão ou relação de mestre-escravo. Qualquer dispositivo pode enviar pacotes para o indicador, porém o indicador destina suas mensagens apenas para um IP e porta remota específico.

Além disso, é possível configurar o endereço do indicador (ADD), as portas: local (SRC.PRT) e remota (DST.PRT), além do IP remoto (DST IP). Por padrão de fabricação, os indicadores são configurados como:

Modo	STD (normal)
Endereco	01
Protocolo	TCP
Тіро	-
Porta local	-
IP remoto	-
Porta remota	-

Um exemplo de aplicação da comunicação TCP com uso do protocolo Modbus-RTU/IP é mostrado abaixo. Neste exemplo, o indicador deve estar configurado no modo Servidor TCP e na mesma rede que o computador. O computador está rodando o software *DAQFactory* (programa de exemplo "quickmod.ctl"). Com as configurações indicadas abaixo pode-se realizar a leitura de peso e status do indicador (mais detalhes sobre este comando e outros comandos disponíveis podem ser vistos no manual 0060MN – Manual dos comandos em Modbus-RTU Linha de Indicadores 3100D e 3100DS).

Ethernet Configuration		
Connection Name:	Ether	Save
IP Address:	192.168.0.10	Cancel
Port:	5000	
Timeout:	1000 (msec)	

Figura 21 – Configuração no software DAQFactory. Deve-se colocar o IP e porta locais configuradas no indicador

V DAQFactory Runtime	- 🗆 ×
QuickMod	
C Modbus RTU Serial Modbus RTU over Ethernet Modbus TCP over Ethernet Monitor	Set Output 2 Scan Rate: 0.1 2
Status: OK O	
ID: • Function: • Type: I Holding Registe Vinsigned Integer (16)	♀ Tag #: ♀ # pts: ♀ ▼ 80 6
80: 53379 81: 3887 82: 0 83: 10000 84: 0 85: 0	0

Figura 22 – Leitura de peso e status do indicador via Modbus-RTU over Ethernet

Solução de	prob	lemas	comuns:
------------	------	-------	---------

Problema	Possível solução
Nenhuma interface de rede foi encontrada pelo programa ou ela se encontra indisponível.	O programa lista apenas as interfaces de rede ativas, disponíveis para transmissão de pacotes de dados e que possuem endereço IPv4. Verifique se esse é o caso.
Mensagens de tempo esgotado.	Verifique se a rede está em boas condições para troca de pacotes em menos de 2 segundos.
Nenhum indicador encontrado.	Os indicadores devem estar conectados na mesma rede para poder receber uma mensagem de broadcast.
Indicador listado com o status "Erro:BOOT" ou "Erro:ATMODE"	Reinicie o indicador e realize a busca novamente. Caso o problema persista, o equipamento deverá ser enviado para Assistência Técnica.
Indicador listado com IP "0.0.0.0" e status "Alocando IP"	O indicador está configurado com o modo de alocação de IP dinâmica (DHCP), espere alguns segundos até que um IP seja alocado para o equipamento e realize a busca novamente.
Outras mensagens de erro não descritas acima	Anote a mensagem de erro e contate a Assistência Técnica.

6.1 Protocolo Modbus TCP

O protocolo de comunicação Modbus TCP possui os seguintes comandos disponíveis:

Comandos de leitura:

- Configuração do valor dos níveis;
- Configuração dos parâmetros dos níveis (trava/não trava e histerese);
- Peso e status;
- o Relógio.
- Comandos de escrita:
 - Comandos remotos;
 - Configuração Zero;
 - Configuração Tara;
 - Configuração Filtro;
 - Configuração do valor dos níveis;
 - Configuração dos parâmetros dos níveis (trava/não trava e histerese);
 - Ajuste do relógio;
 - Configuração do valor de Tara editável.

Para facilitar o processo de implementação do sistema mantemos a estrutura dos dados do Modbus RTU, dessa forma se já possui um sistema no ambiente Modbus RTU e deseja utilizar a estrutura no ambiente ethernet TCP/IP utilizando o protocolo Modbus TCP será mais fácil a migração.

6.1.1 Comandos disponíveis Modbus TCP

6.1.1.1 Modbus TCP – Leitura dos valores dos níveis

	Valor
Função ModBus	0x03
Registrador inicial	0x00 0x28 (40 em decimal)
Quantidade	9
Registrador 40	Bit 7 (0 = níveis de 0 a 3 1 = níveis de 4 a 7)
Registradores 41 e 42	DWord (32 bits) Nível 1 ou 4
Registradores 43 e 44	DWord (32 bits) Nível 2 ou 5
Registradores 45 e 46	DWord (32 bits) Nível 3 ou 6
Registradores 47 e 48	DWord (32 bits) Nível 0 ou 7

6.1.1.2 Modbus TCP – Leitura dos parâmetros dos níveis

	Valor
Função ModBus	0x03
Registrador inicial	0x00 0x3C (60 em decimal)
Quantidade	6
Registrador 60	Valor da histerese
Registrador 61	Bit 0 (Lógica saída 0 = NA 1 = NF)
Registrador 62	Não usado
Registrador 63	Bit 0 = Nível 1 (0 = não trava 1 = trava)
	Bit 1 = Nível 4 (0 = não trava 1 = trava)
Registrador 64	Bit 0 = Nível 2 (0 = não trava 1 = trava)
	Bit 1 = Nível 5 (0 = não trava 1 = trava)
Registrador 65	Bit 0 = Nível 3 (0 = não trava 1 = trava)
	Bit 1 = Nível 6 (0 = não trava 1 = trava)
	Bit 2 = Nível 7 (0 = não trava 1 = trava)

6.1.1.3 Modbus TCP – Leitura de peso e status

	Valor
Função ModBus	0x03
Registrador inicial	0x00 0x50 (80 em decimal)
Quantidade	6
Registrador 80	Bits 0 a 2 (casas decimais)
	Bit 3 = Peso negativo
	Bit 4 = Peso instável
	Bit 5 = Saturação
	Bit 6 = Sobrecarga
	Bit 8 = Peso em zero
	Bits 9 a 12 (Unidade 1 = g 2 = kg 3 = t)
Registrador 81	Bit 0 = Nível 1
	Bit 1 = Nível 2
	Bit 2 = Nível 3
	Bit 3 = Nível 0
	Bit 4 = Zero fixo
	Bit 5 (0 = Líquido 1 = Bruto)
	Bit 8 = Nível 4
	Bit 9 = Nível 5
	Bit 10 = Nível 6
	Bit 11 = Nível 7
Registradores 82 e 83	DWord (32 bits) valor do peso
Registradores 84 e 85	DWord (32 bits) valor da tara

6.1.1.4 Modbus TCP – Leitura do relógio

	Valor		
Função ModBus	0x03		
Registrador inicial	0x00 0xAA (170 em de	0x00 0xAA (170 em decimal)	
Quantidade	7		
Registrador 170	Dia		
Registrador 171	Mês		
Registrador 172	Ano		
Registrador 173	Hora		
Registrador 174	Minuto		
Registrador 175	Segundo		
Registrador 176	1 = segunda-feira	5 = sexta-feira	
	2 = terça-feira	6 = sábado	
	3 = quarta-feira	7 = domingo	
	4 = quinta-feira		

6.1.1.5 Modbus TCP – Comandos remotos

Valor Função ModBus 0x06

0132-MN-03

MANUAL DO USUARIO INDICADOR	ES DE PESAGEM LINHA
	3100D/DS

	Valor
Registrador inicial	0x00 0x5A (90 em decimal)
Valor da configuração	Bit 0 = Zero
	Bit 1 = Tara
	Bit 2 = Zerar total acumulado
	Bit 3 = Destara
	Bit 4 = Destrava níveis
	Bit 5 = Imprime
	Bit 6 = Acumula

6.1.1.6 Modbus TCP – Configuração Zero

	Valor
Função ModBus	0x06
Registrador inicial	0x00 0xE6 (230 em decimal)
Valor da configuração	Bits 0 e 1:
	0 = Zero automático e manual desabilitados
	1 = Zero automático habilitado
	2 = Zero manual habilitado
	3 = Zero automático e manual habilitados
	Bit 8 = habilita zero inicial

6.1.1.7 Modbus TCP – Configuração Tara

	Valor
Função ModBus	0x06
Registrador inicial	0x00 0xFA (250 em decimal)
Valor da configuração	0 = única
	10 = única e memorizada
	20 = sucessiva
	30 = sucessiva e memorizada
	40 = editável
	50 = editável e memorizada
	60 = desabilitada
	70 = automática e memorizada
	80 = automática

6.1.1.8 Modbus TCP – Configuração Filtro

	Valor						
Função ModBus	0x06						
Registrador inicial	0x01 0x0E (270 em decimal)						
Valor da configuração	0 = R1	5 = P3					
	1 = R2	6 = P4					
	2 = R3	7 = G1					
	3 = P1	8 = G2					
	4 = P2	9 = LN					

6.1.1.9 Modbus TCP – Configuração dos valores dos níveis

	Valor
Função ModBus	0x10
Registrador inicial	0x00 0x1E (30 em decimal)
Quantidade	9
Registrador 30	Bit 6 (0 = não grava 1 = grava)
	Bit 10 (0) e Bit 9 (1) = seleciona níveis de 4 a 7
	Bit 10 (1) e Bit 9 (0) = seleciona níveis de 0 a 3
Registradores 31 e 32	DWord (32 bits) Nível 1 ou 4
Registradores 33 e 34	DWord (32 bits) Nível 2 ou 5
Registradores 35 e 36	DWord (32 bits) Nível 3 ou 6
Registradores 37 e 38	DWord (32 bits) Nível 0 ou 7

6.1.1.10 Modbus TCP – Ajuste do relógio

	Valor
Função ModBus	0x10
Registrador inicial	0x00 0xA0 (160 em decimal)
Quantidade	6
Registrador 160	Dia
Registrador 161	Mês
Registrador 162	Ano (dois últimos dígitos)
Registrador 163	Hora (formato 24 horas)
Registrador 164	Minuto
Registrador 165	Segundo

6.1.1.11 Modbus TCP – Configuração do valor de tara editável

	Valor	
Função ModBus	0x10	

Registrador inicial	0x03 0x52 (850 em decimal)
Quantidade	2
Registradores 851 e 852	DWord (32 bits) valor de tara

6.1.2 Mensagens de erro para o protocolo Modbus TCP

O Indicador de Pesagem está preparado para responder os códigos de erros para as seguintes condições:

- Função solicitada não existente;
- Registrador inicial para leitura ou escrita não existentes;
- Quantidade de registradores solicitados para leitura e escrita não existentes.

Utilizado o software Wireshark para demonstrar os dados trocados entre o Indicador de Pesagem e o dispositivo Mestre da comunicação.

- O sistema está preparado para atender as seguintes:
- 0x03 Leitura de registradores;
- 0x06 Escrita de um registrador;
- 0x10 Escrita de múltiplos registradores.

Para monitorar os dados entre o Indicador de Pesagem utilizando o Wireshark, realizar os seguintes passos:

- 1. Abrir o software Wireshark;
- 2. Selecionar a porta da rede no qual o Indicador de Pesagem esteja conectado;
- Ao selecionar a porta será apresentado na tela o tráfego de dados da porta de rede selecionada;
- 4. Para visualizar somente o tráfego de dados entre o computador e o Indicador de Pesagem iremos criar um filtro;
- Digite o comando ip.addr == <endereço IP do módulo Ethernet TCP/IP>;

	*Etherr	net							
<u>F</u> ile	e <u>E</u> dit	<u>V</u> iew <u>G</u> o	<u>C</u> apture	<u>A</u> nalyze	Statistics	Telephon <u>y</u>	<u>W</u> ireless	<u>T</u> ools	<u>H</u> e
			XC	¢ 🗢 🖻) 😤 👔	& ☴ ☴	Θ Θ (Q. 🎹	
	ip.addr	== 192,168,15	5.252						
No.		Time	Source	2		Destination		Protoc	ol
	6985	111.606147	7 192.	168.15.25	2	192.168.15.	27	TCP	
	6985	111.630664	4 192.	168.15.25	2	192.168.15.	27	Modbu	IS
	6985	111.67186	5 192.	168.15.27		192.168.15.	252	TCP	
	6985	112.10451	5 192.	168.15.27		192.168.15.	252	Modbu	IS
	Figu	ra 23 – Ap	resentaç	ão do tra	fego de	dados com	o fitro pa	ara o	

endereço IP selecionado

- Ao selecionar a transmissão com a descrição *Modbus TCP* na coluna *Protocol*, será apresentado os identificadores do protocolo e a resposta do Indicador de Pesagem ao comando solicitado;
- Ao selecionar a transmissão com o destino para o Indicado de Pesagem, observamos o comando para o Indicador de Pesagem;
- 8. Ao selecionar a transmissão com o destino para o computador observamos a resposta do Indicador de Pesagem.

A seguir o exemplo do código de erro para função solicitada não existente.

~	Modbus/TCP																		
	Transaction Identifier: 1																		
	Protocol Identifier: 0																		
	Length: 3																		
		Unit	t I	dent	tif:	ier	: 1												
\sim	Fur	ncti	on 4	4:	Re	ad 🛛	Inp	ut	Regi	iste	rs.	E	xce	pti	on:	11	legal	function	
		.000	0 0	100	=	Fund	cti	on (Code	e: Re	ead	In	out	Re	gist	ters	s (4)		
		Exce	epti	ion	Co	de:	11	lega	al f	Funct	tio	n (:	1)						
00	00	78	2b	cb	ee	85	e4	70	53	3f	00	06	72	08	00	45	00	x+····pS	?··r··E·
00	10	00	31	00	72	40	00	80	06	59	ed	с0	a8	0f	fc	с0	a8	·1·r@···	Y · · · · · ·
00	20	0f	1b	01	f6	da	23	58	26	b6	db	4f	97	ba	b8	50	18	····#X&	· · O · · · P ·
00	30	10	00	07	68	00	00	00	01	00	00	00	03	01	84	01		···h····	

Figura 24 - Software Wireshark, mensagem função inexistente

Para cada comando possui a quantidade específica de registradores, demonstrados na tabela a seguir:

MANUAL DO USUÁRIO INDICADORES DE PESAGEM LINHA 3100D/DS

Comando	Registrador Inicial	Quantidade de
	(decimal)	Registradores
Valores dos níveis	40	9
Parâmetros dos níveis	60	6
Peso e status	80	6
Relógio	170	7
Comandos remotos	90	1
Configuração Zero	230	1
Configuração Tara	250	1
Configuração Filtro	270	1
Valores dos níveis	30	9
Parâmetros dos níveis	50	6
Ajuste do relógio	160	6
Valor de Tara editável	850	2

A seguir o exemplo do código de erro para registrador e/ou a quantidade inexistentes.

1		-				-												
\sim	/ Modbus/TCP																	
	Transaction Identifier: 1																	
	Protocol Identifier: 0																	
	Length: 3																	
	Unit Identifier: 1																	
~	Fun	cti	on	3:	Re	ad I	Hol	din	g R	egis	ter	s.	Ex	cep	tio	n:	Ille	egal data address
		. 000	0 0	011	=	Fund	cti	on (Code	e: R	ead	Ho	ldi	ng l	Reg	ist	ers	(3)
		Exce	ept:	ion	Co	de:	11	leg	al (data	ad	dre	55	(2)				
								0						(-/				
00	200	78	2h	ch		85	e/1	70	53	зf	00	86	72	08	00	45	00	v±
00	000		20									00	12	00	20	~		x+ p3 1 1 E
00	010	66	31	03	4/	40	66	80	60	57	18	C0	að	ØŤ	ŤC	C0	að	·1·G@··· W·····
00	320	Øf	1b	01	f6	da	23	58	26	b6	e4	4f	97	ba	c4	50	18	····#X& ··O···P·

0030 10 00 06 54 00 00 00 1 00 00 00 30 1 83 02

Figura 25 – Software Wireshark, mensagem de registrador inicial de leitura e/ou escrita e/ou quantidade de registradores inexistentes

6.1.3 Exemplo de comandos do Modbus TCP utilizando RealTerm

Neste exemplo será utilizado o software RealTerm que é muito utilizado para enviar, receber e monitorar dados, pode ser realizado o download no link a seguir:

https://sourceforge.net/projects/realterm/files/Realterm/2.0.0.70/Realterm 2.0.0.70 setup.exe/download

6.1.3.1 Comandos utilizando o RealTerm

A seguir alguns comandos:

Comando	Valor
Leitura valores dos níveis	00 01 00 00 00 06 01 03 00 28 00 09
Leitura parâmetros dos níveis	00 01 00 00 00 06 01 03 00 3C 00 06
Leitura peso e status	00 01 00 00 00 06 01 03 00 50 00 06
Leitura Relógio	00 01 00 00 00 06 01 03 00 AA 00 07
Comando remoto (ZERO)	00 01 00 00 00 06 01 06 00 5A 00 01
Comando remoto (TARA)	00 01 00 00 00 06 01 06 00 5A 00 02
Comando remoto (DESTARA)	00 01 00 00 00 06 01 06 00 5A 00 08
Comando remoto (DESTRAVA	00 01 00 00 00 06 01 06 00 5A 00 10
NÍVEIS)	
Comando remoto (IMPRIMIR)	00 01 00 00 00 06 01 06 00 5A 00 20
Configuração ZERO	00 01 00 00 00 06 01 06 00 E6 00 02
(Inicial Desab. / Manual Hab. /	
Auto Desab.)	
Configuração TARA	00 01 00 00 00 06 01 06 00 FA 00 14
(Sucessiva)	
Configuração FILTRO (P1)	00 01 00 00 00 06 01 06 01 0E 00 03
Ajuste do Relógio (20/04/20	00 01 00 00 00 13 01 10 00 A0 00 06 0C 00
16:30:40)	14 00 04 00 14 00 10 00 1E 00 28

6.1.3.2 Configuração do RealTerm

Para configurar, realizar os seguintes passos:

- 9. Abrir o software *Realterm*;
- 10. Selecionar a aba Port;
- Digitar o no campo *Port* o endereço IP e o número da Porta local configurados no software *Indicadores Ethernet TCP/IP Config Tool*;
- 12. Pressionar o botão Open;

Figura 26 – Configuração da porta de comunicação no RealTerm

13. Selecionar a aba Display;

14. Marcar a opção Hex na caixa Display AS;

Donors keep Realterm alive, without You, Realterm will die

Figura 27 – Configuração do formato de dados no RealTerm

6.1.4 Enviar comandos via RealTerm

- 1. Selecionar a aba Send;
- Digitar o comando desejado para enviar ao Indicador de Pesagem e pressionar o botão as <u>H</u>ex;

RealTerm: Serial Capture Program 3.0.1.44		
00 01 00 00 00 0F 01 03 0C 06 03 00 20 00 00 05 58 00 00 00 00 00 01 00 00 00 06 01 06 00 5A 00 02		^
		~
Display Port Capture Pins Send Echo Port I2C I2C-2 I2CMem I2CMisc Misc	\n Clear Freeze	?
80 01 90 90 90 90 91 30 50 90 90 yumbers as ASCII - +CRC Hex 80 91 90	Status Connected RtD (2) TXD (3) r DCD (1) CTS (8) DCD (1)	1
9%APPDATA%(Realterm\send.txt V Send File X Stop Delays 2 0 0	DSR (6) Ring (9) BREAK Error USB	
Rows: 20 x Cols:63 CP	PS:0 Port: 192.168.15.252:502	

Figura 28 – Comando de leitura de peso e status, comando remoto de tara via RealTerm

7 Interfaces Seriais (SERIAL)

O indicador possui um canal de saída serial: padrão RS-232 COM (SERIAL 1) ou RS-485 (SERIAL 3) – selecionáveis.

SERIAL	INTERFACE SERIAL
VER	Modo STD (normal) / ADV (avançado)
END	Endereço Serial 1 / Serial 3
RS	Padrão elétrico RS-232 ou RS-485
PR	Protocolo de comunicação Serial 1 / Serial 3
VC	Velocidade de comunicação da Serial 1 / Serial 3
STOP	Configuração dos Stop Bits, aplicável apenas ao protocolo MODBUS-RTU

Ambas são protegidas contra descargas eletrostáticas (ESD) de até 15KV sendo que a saída RS-485 possui resistor de balanceamento de linha. Sempre que o indicador for fisicamente localizado em uma das extremidades da rede de comunicação, as duas chaves deverão ser configuradas na posição ON, conforme informado na Seção 5.3 Terminadores de Linha.

As saídas RS-232 COM e a RS-485 não podem ser usadas simultaneamente, ou seja, quando a SERIAL 1 for a selecionada para a comunicação, a SERIAL 3 estará automaticamente desabilitada e viceversa. A configuração de ENDEREÇO, PROTOCOLO e VELOCIDADE é sempre a mesma, independente da saída serial selecionada.

O indicador é um dispositivo essencialmente ESCRAVO, exceto quando operando com o protocolo TRC. Portanto, para que possa ser

acessada qualquer informação de pesagem, é necessário que esteja conectado a um dispositivo MESTRE, o qual toma a iniciativa de enviar comandos de PROGRAMAÇÃO e/ou LEITURA dos parâmetros do indicador endereçado.

O padrão elétrico RS-232 permite a interligação de apenas dois dispositivos em um mesmo meio físico (cabo de comunicação), caracterizando o modo ponto a ponto, além de limitar a distância destes dispositivos a no máximo 10m. Já o padrão elétrico RS-485 permite interligar até 32 dispositivos fisicamente em uma mesma rede de comunicação, caracterizando o modo multiponto, com distâncias que podem chegar até 1200m. Este é o padrão adequado para interligar indicador a uma rede de comunicação multiponto, conversores de acesso a redes fieldbus (PROFIBUS-DP, DeviceNet, etc.) ou mesmo a um único ponto localizado a distâncias maiores que 10m.

Atentar ao fato de que no padrão elétrico RS-232 (SERIAL 1) o sinal RX1 do indicador deve ser conectado ao sinal TXD do dispositivo mestre, o sinal TX1 do indicador deve ser conectado ao sinal RXD do dispositivo mestre, e que os sinais GND de ambos devem ser interligados. No padrão elétrico RS-485 (SERIAL 3) deve-se interligar o sinal A do indicador e do dispositivo mestre, o sinal B do indicador e do dispositivo mestre, e sinais GND de ambos. Para o padrão RS-485, deve-se ligar a blindagem do cabo ao GND **de apenas um dos dispositivos**.

RS	Padrão elétrico da Serial 1 / Serial 3
232	RS-232
485	RS-485

Para operar em rede multiponto, é necessário que cada dispositivo possua seu próprio ENDEREÇO lógico, único e diferenciado dos demais pertencentes à mesma rede física. O operador pode programar um endereço de 01 (*default*) a 99. Também deve ser definido o PROTOCOLO DE COMUNICAÇÃO utilizado na rede.

END	Edição do endereço da Serial 1 / Serial 3	
01	Faixa válida de 0 a 99	

Atualmente estão disponíveis os seguintes protocolos com as respectivas configurações de comunicação:

- TRC Transmissão Contínua;
- AA ALFA ASCII;
- T02;
- MODBUS-RTU: 8 data bits, SEM paridade, 2 stop bits (default)
- EPd: Configuração para habilitar a comunicação com o Conversor nos modelos EtherNet/IP, PROFINET, PROFIBUS-DP e DeviceNet.

As opções de VELOCIDADE DA COMUNICAÇÃO (baud rate) disponíveis são: 4800, 9600, 19200, 38400, 57600, 115200 e 230400 bps.

VC	Velocidade de comunicação Serial 1 / Serial 3
4.8	4.800 bps
9.6	9.600 bps
19.2	19.200 bps
38.4	38.400 bps
57.6	57.600 bps
115	115.200 bps
230	230,400 bps

É possível configurar a quantidade de STOP

STOP	Aplicável apenas ao protocolo MODBUS-RTU						
1	Stop Bit (tamanho total da palavra: 10 bits)						
2	Stop Bits (tamanho total da palavra: 11 bits)						

Sempre que ocorrer a transmissão de informação, o LED Tx localizado no painel frontal será aceso para sinalizar o instante real da transmissão dos dados. Ao receber, o LED Rx será aceso.

7.1 Versão de Protocolo de Comunicação (VER)

O parâmetro VER permite ao sistema enviar mais dados de informação junto ao protocolo, como unidade (g, kg e t) e indicação do sistema de pesagem em ZERO.

7.2 Protocolo T02

7.2.1 T02 com VER – STD (padrão)

O padrão de transmissão T02 está configurado para operar a 8 data bits, SEM paridade, 1 stop bit (FIXA), com a seguinte formatação:

BYTE	VALOR	SIGNIFICADO									
1	02H	Identifica INÍCIO do pacote de transmissão de dados									
		Status 1 da Pesagem									
		Bit	7	6	5	4	3	2	1	0	
2	STS1		Não Usado	Sobrecarga	Saturação	Instável	Peso negativo		Casas decimais		
		Status	2 da P	esage	m						
		Bit	7	6	5	4	3	2	1	0	
3	STS2		SP7	SP6	SP5	SP4	SP0	SP3	SP2	SP1	
4		Repres	sentac	ão nu	mérica	do F	PESO	DO [DISPL	AY no	
5		format	o ASĆ	II. Por	exemp	olo, se	a ider	ntificaç	ão do	PESO	
6	DESO	DO DI	SPLA	for 1	8765,	teremo	os as r	eprese	entaçõ	es dos	
-	FESU	númer	os nos	respec	ctivos b	ytes:		0			
/		BYT	E	4	5		6	7		8	
8		31H 38H 37H 36H 35H						35H			
9		Representação numérica da TARA no formato ASCII. Por									
10 exemplo, se a TARA						sistem	a for	30942,	, terer	nos as	
11	TARA	repres	entaçõ	es dos	númei	ros nos	s respe	ctivos bytes:			
12		BYT	E	9	10		11	12		13	
13				<u>33H</u>	30H		39H	34	i _	32H	
14	03H	Término do pacote de dados									
15	BCC	Byte com CHECKSUM dos bytes enviados de acordo com a lógica OU-EXCLUSIVO									

Sempre que o(s) DÍGITO(s) MAIS À ESQUERDA que representa o valor do PESO no DISPLAY estiverem apagados, o byte correspondente no pacote de transmissão será igual a 30H.

O procedimento da lógica OU-EXCLUSIVO basicamente compara os bits de dois bytes. Bits com valores iguais resulta em 0 e com valores diferentes resulta em 1. Por exemplo, o resultado da lógica OU-EXCLUSIVO de dois bytes com valores 31H e 38H é 09H. Para se obter o BCC de um pacote de dados transmitido, são calculados os bytes 1 a 14, inclusive.

7.2.2 T02 com VER – ADV (avançado)

Parâmetro VER configurado para ADV o protocolo T02 altera sua estrutura de dados, idêntico ao enviado como resposta de solicitação de leitura de peso e status no Modbus RTU, a seguir a descrição dos bytes:

BYTE	VALOR	SIGNIFICADO								
1	Endereço	Retor Indica	Retorna o valor de endereço configurado no Indicador						do no	
2	0x03	Funçã	ăo de	leitu	ra do	Mode	ous R	TU		
3	0x0C	Quan	tidade	e de l	oytes	trans	ferid	os		
		Bit	7	6	5	4 Un	3 idade	2 e (g, kę	1 get)	0
4	TUS 1		Não usados			g kg t	#4 0 0 0	4 #3 0 0	#2 0 1 1	Peso em ze
	TA	Bit	7	6	5	4	3	2	1	0
5	S		Fixo em 1	Sobrecarga	Saturação	Instável	Negativo		Casas decimais	
		Bit	7	6	5	4	3	2	1	0
6	STATUS 2			2	Nao usados		Nível 7	Nível 6	Nível 5	Nível 4

BYTE	VALOR	SIGNIFICADO								
		Bit	7	6	5	4	3	2	1	0
7			Não usados		Peso Bruto	Zero Fixo	Nível 0	Nível 3	Nível 2	Nível 1
8										
9		Informação do valor de Peso no formato Inteiro sem sinal						eiro		
10	PESO									
11										
12										
13		Informação do valor de Tara no formato Inteiro sem sinal						eiro		
14	IARA									
15										
16	CDC	Verificação dos dados transferidos utilizando						lo		
17	UKU	CRC-16/MODBUS								

7.3 Protocolo TRC (Transmissão Contínua)

7.3.1 TRC com VER – STD (padrão)

O padrão de transmissão TRC está configurado para operar a 8 data bits, SEM paridade, 1 stop bit (FIXA), com a seguinte formatação:

Indicação em Peso Bruto:	Indicação em Peso Líquido:
PB: 10,000 T: 00,000CRLF	PL: 00,000 T: 10,000CRLF
Indicação do Peso Negativo	Indicação do Peso Instável:
PB:-10,000 T: 00,000CRLF	**: 00,375 *: 10,000CRLF
Indicação em Sobrecarga	Indicação em Saturação:
S <brecrlf< td=""><td>SATURACRLF</td></brecrlf<>	SATURACRLF

Figura 29 - Captura dos dados via terminal ASCII (protocolo TRC)

Os dados são transmitidos na formação em texto plano ASCII, os caracteres CR (0x0D – Carriage Return) e LF (0x0A – Line Feed), respectivamente são enviados ao final de cada transmissão.

7.3.2 TRC com VER – ADV (avançado)

Parâmetro VER configurado para ADV o protocolo T02 apresenta as mesmas características e no mesmo formato em texto plano em ASCII, a transmissão fica da seguinte forma:

Unidade	Dados
g	PB: 10,000g T: 00,000gCRLF
kg	PB: 10,000kg T: 00,000kgCRLF
t	PB: 10,000t T: 00,000tCRLF

7.4 Protocolo AA (Alfa ASCII)

7.4.1 AA com VER – STD (padrão)

O padrão de transmissão AA está configurado para operar a 8 data bits, SEM paridade, 1 stop bit (FIXA), possui a mesma formatação do envio de dados do protocolo TRC, porém deve ser solicitado seguindo o modelo MESTRE / ESCRAVO, possui os seguintes comandos:

Comando	Descrição					
xxPCRLF ou xxpCRLF	Solicita o envio do Peso e Tara					
xxTCRLF ou xxtCRLF	Solicita a execução do comando de TARA					
	Resposta: OKCRLF					
xxDCRLF ou xxdCRLF	Solicita a execução do comando de					
	DESTARA					

MANUAL DO USUÁRIO INDICADORES DE PESAGEM LINHA 3100D/DS

Comando	Descrição
	Resposta: OKCRLF
xxICRLF ou xxiCRLF	Solicita a execução do comando de
	IMPRESSAO serial
	Resposta: OKCRLF
xxRCRLF ou xxrCRLF	Solicita a execução do comando de
	DESTRAVA dos níveis
	Resposta: OKCRLF
xxZCRLF ou xxzCRLF	Solicita a execução do comando de ZERO
	Resposta: OKCRLF
Comando não	Resposta: COMANDO INVALIDOCRLF
reconhecido pelo	•
Indian de r	
Indicador	

O campo xx do comando corresponde ao valor do endereço serial configurado no Indicador de Pesagem.

PB: 02,000 T:	00,000 (RLF
PL: 00,000 T:	02 , 000 (rlf
PL:-02,000 T:	02 , 000 (rlf
S <brecrlf< td=""><td></td></brecrlf<>	
SATURA CRUF	
**:-01,157 *:	02 , 000 (rlf
OKCRLF	
COMANDO INVAL	I DO CRUF

Figura 30 - Captura dos dados via terminal ASCII (protocolo AA)

7.4.2 AA com VER – ADV (avançado)

A resposta ao comando de solicitação de peso no protocolo AA é idêntica ao protocolo TRC com o parâmetro VER configurado para ADV.

7.5 Especificação do cabo

Recomenda-se cabo em par trançado 24 AWG blindado, pois é a melhor construção física com relação a bloqueio de interferências e a malha oferece um caminho seguro para eliminação dos ruídos de modo comum.

7.6 Taxa de transmissão vs. comprimento do cabo

O meio elétrico RS-485 pode ser utilizado para trafegar dados em linhas de até 1200m, ou para trafegar dados a taxas de 10Mbps, mas não ambos ao mesmo tempo. Quanto maior a velocidade de transmissão maior as perdas de cabos compridos. Em termos gerais, uma linha de 1200m pode trafegar dados de até 100kbps.

7.7 Terminadores de Linha

Os terminadores de linha são resistores instalados em paralelo nas extremidades da linha de transmissão com a finalidade de eliminar o efeito indesejado da reflexão de onda. Em linhas RS-485, é necessária a utilização de terminadores (resistores de 120Ω) em cada extremidade, independente de existir apenas 2 dispositivos.

Figura 31 – Chaves de acionamento do terminador (no destaque). Indicador Linha 3100D, necessário abrir a caixa para ter acesso.

Figura 32 – Exemplo de esquema para linha de comuncação RS485 com utilização correta de terminadores

Observar que quando há vários dispositivos na linha, fisicamente somente o primeiro e o último devem ter terminadores. Os intermediários não devem tê-los, pois sobrecarregariam o componente responsável pela comunicação de dados (driver).

Nos indicadores Alfa Instrumentos existe uma chave dupla interna que quando acionada (posição ON), conecta o resistor de terminação em paralelo com a saída RS-485, como indicado na Figura 31.

7.8 Geometria das linhas de transmissão

Um erro comum em linhas de transmissão é o uso de derivações (ligações em "toco") que criam situações desfavoráveis. Se forem utilizados terminadores de linha em cada uma de suas extremidades podese sobrecarregar o driver, em compensação, não os utilizar poderia gerar interferências por reflexão causando distorções dos pulsos da forma de onda.

Notar que não é impossível a rede funcionar em arquitetura imprópria, porém a taxa de erros e a velocidade de comunicação serão prejudicadas.

Figura 33 – Exemplo de geometria da rede

7.9 Aterramento e Blindagem

Ao conectar equipamentos próximos, instalados na mesma estrutura metálica e com sistemas de aterramento sem diferença de potencial entre si, é indiferente conectar a blindagem do cabo em todos os dispositivos ou apenas em um deles.

No entanto, em instalações de campo onde os equipamentos estão distantes uns dos outros, deve-se ter atenção. Nessas situações, podem ocorrer diferenças significativas de potencial entre os diversos pontos de aterramento (GND). Se as blindagens dos cabos forem interligadas em todos os equipamentos, pode surgir uma corrente elevada percorrendo as blindagens devido à diferença de potencial entre os pontos de terra. Isso pode causar interferências eletromagnéticas por indução e até mesmo danificar as blindagens devido ao aquecimento ou à ruptura.

Para evitar esses problemas, recomenda-se conectar a blindagem apenas em um dos equipamentos, reduzindo o risco de formação de loops de terra e interferências.

A maneira correta de interligação quando há diferenças de potencial entre os aterramentos é conectar-se a blindagem do cabo somente em um ponto, de preferência o mestre da rede.

Há um limite de tensão admissível entre os aterramentos para não danificar o circuito integrado driver RS-485. Certificar-se que a diferença não seja superior a 7V.

Nota: os drivers RS-485 utilizados nos equipamentos Alfa Instrumentos suportam descargas eletrostáticas de até 15kV, entretanto a tensão DC ou AC pico permanentes não podem ultrapassar o limite de 7V.

7.10 Redes RS-485 Descrição

O padrão elétrico RS-485 utilizado em comunicações seriais é um sistema arquitetado para comunicação bi-direcional, half-duplex (fluxo de dados em uma direção por vez), que possibilita a conexão de até 32 dispositivos, baseado em sistema diferencial de transmissão de dados, reduzindo a influência de ruídos de modo comum.

8 Impressão Serial (INPRES)

Neste menu é possível customizar a impressão das imagens criadas pelos protocolos EPL e ZPL, a seguir a descrição dos parâmetros.

8.1 Saída para Impressão Serial (IS)

A saída RS-232 IMP (SERIAL 2) é utilizada exclusivamente para impressão serial. É uma interface no padrão elétrico RS-232, que opera de modo fixo a 9600 bps, 8 data bits, SEM paridade, 1 stop bit e transmissão de dados no padrão ASCII. A distância máxima permitida entre indicador e impressora é de 10m.

Quando a impressão for do tipo MATRICIAL, quer em impressoras ou etiquetadoras. Também está disponível a impressão em impressoras e etiquetadoras de CÓDIGO DE BARRAS, desde que baseadas nos protocolos ZEBRA EPL/EPL2 ou ZEBRA ZPL/ZPL2 e suportem o padrão CODE128.

Para que ocorra a impressão, é necessário que o sistema de pesagem esteja estável (sinalizador [ESTÁVEL] aceso) e que o indicador não esteja indicando SOBRECARGA e/ou SATURAÇÃO.

À impressão é acionada pressionando a tecla <IMP> ou através do comando REMOTO IMP.

Os comprovantes de pesagem, tanto nas impressoras matriciais como nas de código de barras, são impressos no seguinte formato: Z:sXXXXuu T:sYYYYYuu - DDD dd/mm/aa hh:mm:ss sendo:

Z:sXXXXXuu	Z: onde Z = B ou L, respectivamente se o peso do mostrador indicar peso BRUTO ou LÍQUIDO.
	s: SINAL do peso, sendo deixado em BRANCO se o peso for POSITIVO ou igual a zero, e "" se for NEGATIVO, tanto para a indicação do PESO ou da TARA
	XXXXX: peso no mostrador, podendo ser adicionado a este campo o sinal de PONTO DECIMAL de acordo com a quantidade de CASAS DECIMAIS especificada pelo operador un unidade de pesarem configurada pelo operador ka a o ut
T:sYYYYYuu	T:sYYYYY: equivalente do peso cancelado se tiver sido
	executada a função TARA, podendo ser adicionado a este
	campo o sinal de PONTO DECIMAL de acordo com a
	quantidade de CASAS DECIMAIS especificada pelo operador
	uu: unidade de pesagem configurada pelo operador, kg, g ou t
DDD	dia da semana: SEG, TER, QUA, QUI, SEX, SAB, DOM
dd/mm/aa	data no instante da impressão, no formato dia/mês/ano
hh:mm:ss	hora no instante da impressão, no formato hora/minuto/segundo

O protocolo EPL realiza a impressão com código de barras no padrão CODE128. As imagens da impressão possuem as seguintes dimensões aproximadas:

A:00000.000kg M:000.000kg 0T:0000 21/11/18 08:58:32

Figura 35 – Protocolo EPL, impresão Total Acumulado (dimensões aproximadas 90x25mm)

B: 00.495kg T: 00.000kg - 0UA 21/11/18 08:58:19

Figura 36 – Protocolo EPL, impressão Peso e Tara (dimensões aproximadas 65x25mm)

A:00000.000kg M:000,000kg QT:0000 21/11/18 09:08:05

Figura 37 – Protoclo ZPL, impressão Total Acumulado (dimensões aproximadas 75x10mm)

B: 00,495kg T: 00,000kg - QUA 21/11/18 09:01:28

Figura 38 – Protoclo ZPL, impressão Peso e Tara (dimensões aproximadas 70x10mm)

As dimensões podem variar de acordo com a configuração da atura e largura para o protocolo ZPL e escolha da fonte para o protocolo EPL.

IS	Tipo da impressão serial
PAd	Impressoras MATRICIAIS
	Impressora para CÓDIGO DE BARRAS padrão ZEBRA
EPL	EPL/EPL2
	Impressora para CÓDIGO DE BARRAS padrão ZEBRA
zPL	ZPL/ZPL2

8.2 Quantidade a imprimir (QTDI)

A quantidade de comprovantes impressos pode ser programada de 1 (*default*) a 9 ao alterar o parâmetro Qtdl.

QTDI	Quantidade de impressões
1	Mínima
9	Máxima

8.3 Configuração do posicionamento da etiqueta (IPOSH e IPOSY)

O Indicador permite ao operador configurar o posicionamento da imagem gerada na etiqueta para os protocolos ZPL e EPL.

IPOSH	Posição horizontal da imagem
	Valor 0 a 999
IPOSY	Posição vertical da imagem
	Valor 0 a 999

Para manter a posição original da imagem gerada pelo protocolo EPL configurar os parâmetros IPOSH com 150 e IPOSY com 100. Para o protocolo ZPL configurar os parâmetros IPOSH com 190 e IPOSY com 270.

8.4 Escolha da fonte para o Protocolo EPL (FONT)

O Indicador permite selecionar até cinco opções de fonte para atender a necessidade do cliente.

FONT	Escolha de fonte
	Valor 1 a 5

8.5 Configuração das dimensões da fonte para o Protocolo ZPL (FONTA e FONTL)

Para o Protocolo ZPL é possível configurar a altura e largura da fonte.

FONTA	Configuração da altura da fonte
	Valor 20 a 999
FONTL	Configuração da largura da fonte
	Valor 20 a 999

8.6 Configuração da orientação da impressão para o Protocolo ZPL

É possível configurar a orientação da impressão na horizontal ou vertical de acordo com a necessidade.

SENT	Alarme de acumulação do peso
Н	Horizontal
r	Vertical

9 Contadora (CONTA)

O Indicador possui a funcionalidade de realizar contagem baseando-se no peso. Para o modulo funcionar corretamente é necessário realizar duas etapas, indicar a quantidade de peças de amostra para realizar a média por peça e a captura do peso ou edição do peso da quantidade de peças de amostra, a seguir a descrição dos parâmetros da função Contadora.

9.1 Habilita (HAB)

Este parâmetro permite habilitar a função Contadora do Indicador.

HAB	Habilita função Contadora
d	Desabilitado
Н	Habilitado

9.2 Quantidade de peças para amostra (QTDE)

Neste parâmetro é informada ao Indicador a quantidade de peças que serão utilizadas na amostra.

QTDE	Quantidade de peças para amostra
	Valor 1 a 999

9.3 Captura do peso das amostras (CAPTUR)

Neste parâmetro o Indicador realiza a captura automática do peso das amostrar para realizar o cálculo de peso médio das amostras.

CAPTUR	Captura do peso das amostras
	Fase de CAPTURA do peso
PRONTO	Captura do peso realizado com sucesso
	Ao realizar a captura do peso não foi identificado o sistema em
ERRO	peso líquido, favor repetir o procedimento.

9.4 Edição do peso da amostra (ANOSTR)

No parâmetro ANOSTR é possível visualizar e editar o valor capturado no parâmetro CAPTUR.

ANOSTR	Edição do peso da amostra
	Valor 1 a 999

9.5 Descrição da operação

- 1. Posicione o recipiente sobre a balança;
- 2. Pressione a tecla TARA para descontar o peso do recipiente;
- 3. Coloque as peças de amostra no recipiente;
- Acesse o menu pressionando a tecla ↓ (CNFG) até ser apresentado a mensagem COnFIG;
- 5. Pressione a tecla \rightarrow (TARA) até o menu **ContA**;
- 6. Pressione a tecla CNFG, será apresentado a mensagem HAb, pressione a tecla \rightarrow (TARA) para acessar o parâmetro;
- Pressione a tecla ↑ (ZERO) até ser apresentada a opção H. Confirme a operação com a tecla IMP;
- 8. Pressione a tecla \downarrow (CNFG), será apresentado a mensagem **qtdE**, pressione a tecla \rightarrow (TARA) para acessar o parâmetro;
- Configure o valor com a mesma quantidade de peças colocadas no recipiente, utilize as teclas TARA (avança o digito), ZERO (incrementa valor do digito) e IMP (confirma edição do parâmetro);
- Pressione a tecla ↓ (CNFG), será apresentado a mensagem CAPtUr, pressione a tecla → (TARA) para acessar o parâmetro;
- Ao final do procedimento será apresentada a mensagem "Pronto". Caso a mensagem seja "Erro", favor repita os passos desde o começo.

- Ao retornar para mensagem CAPtUr pressione a tecla ↓ (CNFG), será mostrado a mensagem AnoStr (amostra) pressione a tecla ↓ (CNFG) novamente;
- Será apresentado no display a quantidade de peças configurada no parâmetro qtdE;
- 14. O sistema está configurado e pronto para uso;
- 15. Coloque as peças a serem contadas na balança.

Observações:

- O sistema em modo de Contadora apresenta o símbolo "c." no dígito mais à esquerda do display e apaga os símbolos de unidade (g, kg, t);
- Quando a função está habilitada somente realiza a contagem em peso líquido;
- Caso a contagem ultrapasse o valor de 99999 será apresentado a mensagem "ULtrAP" (ultrapassou) e não permite a impressão serial;
- Ao realizar a captura do peso da amostra e não estiver em peso líquido e/ou instável será apresentada a mensagem "Erro";
- Peso médio por peça deverá ser representativo ao sistema de pesagem >=10 divisões;
- Quanto maior a quantidade de peças para amostra melhor a precisão obtida na contagem;
- 7. Variações da massa por peça podem causar diferenças na contagem.

No Anexo A encontra-se resumo desta descrição. Sugere-se imprimir o anexo para treinamento.

9.6 Impressão serial Contadora

Com a contagem de peças sendo apresentado no display do Indicador o sistema permite a impressão, com a seguinte formatação:

L: 09,000kg QT: 00090 - SEG 28/01/19 10:18:24

Figura 39 - Protoclo ZPL, impressão da função Contadora

Figura 40 - Protocolo EPL, impresão da função Contadora

10 Saída Analógica (ANALOG) Disponível: 3103 e 3107

O indicador fornece saída analógica em corrente 4/20mA ou 0/20mA, dentro do padrão da norma ISA S50.1, classe L, tipo 4. O conversor digital/analógico (D/A) do indicador responde a variações de peso medidas com resolução de 16 bits. O sinal analógico é isolado galvanicamente, evitando a injeção de ruídos através do loop de aterramento entre indicador e receptor, permitindo "flutuar" a carga ou a transmissão em potenciais diferentes da terra. Desta forma para atingir o melhor desempenho dessa funcionalidade é recomendável realizar a conexão conforme diagrama abaixo.

Pode-se configurar o indicador para operar com a balança no modo peso BRUTO ou LÍQUIDO.

SAN	REFERÊNCIA DE PESO da saída analógica
b	Peso bruto
L	Peso líquido

Se for escolhida saída proporcional ao peso BRUTO, ao acionar a função TARA o sinal analógico continua proporcional ao peso BRUTO, não sofrendo alteração devido à TARA. Se for proporcional ao peso LÍQUIDO, o sinal analógico irá se ajustar ao peso líquido a cada operação de TARA e, após o comando DESTARA, interpretará peso LÍQUIDO = peso BRUTO.

Antes de iniciar a primeira utilização da interface de saída analógica, é necessário que o operador configure os valores dos parâmetros P1 e P2, que são respectivamente os valores de pesos para os valores de ajuste de corrente A1 e A2, ou seja, o valor de peso configurado em P1 corresponderá à saída de corrente relativa ao número ajustado em A1, do mesmo modo o valor de peso configurado em P2 originará a corrente relativa ao número ajustado em A2.

O indicador possui sua saída de corrente calibrada em fábrica para toda a faixa de corrente de 0 a 20 mA, porém, em virtude de muitos CLPs necessitarem de processo de ajuste da interface de leitura de corrente para que efetuem a correta mensuração e, em razão de nem sempre haver disponibilidade de quem possa realizar a ajuste no CLP, o indicador permite que o operador altere os parâmetros A1 e A2 de corrente, ajustando-os ao valor de corrente esperado na leitura do CLP.

Deve-se ressaltar que os valores de ajuste de corrente mostrados em A1 e A2 são adimensionais e podem ser ajustados de 0 a 65535. Quando encontrada a faixa de valores A1 e A2 que está na faixa de 0mA a 20mA, cada acréscimo em A1 ou A2 significará acréscimo no valor de corrente provida pelo sistema. Do mesmo modo, o decréscimo de A1 ou A2 resultará em decréscimo na saída de corrente. Para ajustar A1 e A2 é necessário monitorar o resultado da alteração de seus valores no conector de saída de corrente, utilizando amperímetro ou o próprio equipamento que fará a leitura do sinal na aplicação final (por exemplo, CLP).

Para alterar os valores de A1, A2, P1 e P2 siga as instruções constantes no Fluxograma de Configuração.

A interface de saída analógica permite que o indicador forneça também a resposta inversamente proporcional ao peso, em que acréscimo de peso implica em decréscimo do valor. Para isso, basta ajustar os parâmetros P1, P2, A1 e A2 com maior valor de peso para o menor valor de corrente.

ANALOG	Saída analógica
SAN	REFERÊNCIA DE PESO da saída analógica
P1	Peso selecionado para corrente A1
A1	Ajuste de corrente para P1
P2	Peso selecionado para corrente A2
A2	Ajuste de corrente para P2
TSA	Tipo de Saída Analógica

Configuração TSA permite dois tipos de comportamento da Saída Analógica, chamadas de LINEAR e ESPELHADO, no modo LINEAR o sistema observa o sinal do peso gerando a Saída Analógica correspondente, no modo ESPELHADO o sistema ignora o sinal do peso, refletindo o sinal analógico para valores de peso negativo.

Figura 42 – Comportamento da Saida Analogica (LINEAR e ESPELHADO)

TSA	Tipo da Saída Analógica
L	Linear
E	Espelhado

11 Interface Relógio (RELOG)

Esta interface suporta a programação de informações de DATA/ HORA com calendário até o ano 2099, gerenciando automaticamente os dados pertinentes à anos bissextos. O DIA DA SEMANA é obtido de forma automática de acordo com o calendário JULIANO.

O programa do indicador evita que sejam programadas datas e horários inválidos, como por exemplo, 30 de FEVEREIRO ou 25:01 h sendo que são permitidas datas apenas a partir de 01/01/00.

Os dados mantêm-se armazenados e atualizados mesmo com o indicador desligado devido a um circuito adicional composto por bateria de lítio, que mantem o relógio em funcionamento.

RELOG	RELÓGIO
DATA 01.01.00	formato DIA. MÊS. ANO, sendo internamente o valor do
	ANO acrescido de 2000
HORA 01.01.00	formato HORA. MINUTO. SEGUNDO

12 Ajuste do Indicador

Observação: O termo "Calibração" foi substituído pelo termo "Ajuste" para que todos os produtos Alfa Instrumentos Eletrônicos estejam com as suas terminologias adequadas ao VIM – Vocabulário Internacional de Metrologia.

Os indicadores Alfa Instrumentos mantêm as características de precisão e resolução para todas as células de até 3mV/V.

CALIB	AJUSTE
CAD	casas decimais
DEG	degrau do indicador
CAPAC	capacidade máxima da balança
PAJT	peso de ajuste
UNIDAD	unidade de peso
SPESO	captura do valor sem peso aplicado
CPESO	captura do valor com peso de ajuste
CANCEL	cancela as capturas realizadas até o momento

O processo de ajuste do indicador é extremamente fácil, rápido e seguro. A seguir são abordados alguns conceitos para que o ajuste seja a mais adequada em relação à capacidade da balança em questão.

Figura 43 – Botão de ajuste (no destaque)

Para ter acesso ao estágio de ajuste, o indicador deve estar mostrando um valor de peso BRUTO e o botão interno de ajuste "BOTÃO DE AJUSTE" deve ser pressionado por pelo menos 3 segundos (vide figura acima).

Após o ajuste, o equipamento deve ser lacrado, impedindo que se possa ajustar o equipamento sem o rompimento do lacre. Há 5 parâmetros que devem ser configurados antes de se efetuar o ajuste:

 CASAS DECIMAIS (CAD): posição do PONTO DECIMAL no mostrador. A escolha é meramente visual, pois todos os cálculos realizados pelo indicador são feitos em ponto flutuante. É possível mostrar de ZERO até 4 CASAS DECIMAIS:

CAD	Casas decimais
0	Sem casas decimais
0.0	1
0.00	2
0.000	3
0.0000	4

 DEGRAU (DEG): incremento do dígito menos significativo do indicador, estão disponíveis 1, 2 e 5. Para aplicações que necessitem de ZERO FIXO, também estão disponíveis as opções 10, 20, e 50, que operam da mesma maneira que 1, 2 e 5, porém, acrescendo um ZERO inativo à direita do valor no mostrador. Supondo uma balança de 10.000 kg sem casas decimais, teríamos as seguintes variações:

DEG	Degrau
1	Mostrador varia de 1 em 1: 00001, 00002, 00003,
2	De 2 em 2: 00002, 00004, 00006,
5	De 5 em 5: 00005, 00010, 00015,

DEG	Degrau
10	De 10 em 10: 000010, 000020, 000030,
20	De 20 em 20: 000020, 000040, 000060,
50	De 50 em 50: 000050, 000100, 000150,

- CAPACIDADE MÁXIMA DE PESAGEM (CAPAC): O valor é de livre escolha, podendo variar de 0 a 99999, porém considerar de 0 a 999990 quando operar com degrau maior que 5 (zero fixo). A capacidade de uma balança não é igual à soma das capacidades das células de carga. Deve-se descontar o peso morto da estrutura, prato etc., e prever folga para evitar sobrecarga mecânica às células de carga. Por exemplo, uma plataforma de pesagem de capacidade = 1000 kg terá 4 células de 500 kg. Embora a soma das células resulte 2000 kg deve-se prever a concentração de carga em um lado da plataforma ou até em dois vértices, gerando o efeito gangorra. Neste exemplo, o valor a ser programado é 1000.0 para leitura com 10000 divisões com DEGRAU = 1, ou 1000 para 1000 divisões com DEGRAU = 1. Sempre que o peso aplicado à balança exceder o valor programado em CAPAC, será mostrada a mensagem "SOBRE" ou 'SATURA", respectivamente identificando sobrecarga na balança ou saturação dos limites de conversão do A/D do indicador. Para atender a portaria 236/94 do INMETRO, não é necessário que o valor CAPAC seja composto da capacidade da balança, mais o equivalente ao valor do DEGRAU x 9, ou seja, CAPAC = capacidade + (DEGRAU x 9) é calculado automaticamente.
- PESO DE AJUSTE (PAJT): O peso previamente aferido, e que servirá de PADRÃO para o ajuste do sistema. O valor exato é arbitrário, desde que conhecido e menor que a CAPACIDADE do sistema. Apesar do indicador aceitar, não convém utilizar pesos menores do que 40% da capacidade da balança. A faixa ideal situa-se de 70 a 100% da capacidade do sistema. Observa-se a grande facilidade proporcionada pelo indicador em relação aos indicadores automáticos comuns que necessitam que o peso seja um valor definido (10,00 ou 20,00 ou 50,00, etc.). Com o indicador pode-se utilizar um objeto qualquer, por exemplo, pesando 53,275 kg, pesá-lo em uma balança previamente aferida (ou aferi-lo contra padrões reconhecidos) e utilizá-lo como PESO DE AJUSTE.
- UNIDADE DO VALOR DE PESAGEM (UNIDAD): O indicador possui sinalizadores luminosos para as letras t, k e g, facilitando a visualização da unidade de pesagem definida na aplicação.

Com todos os parâmetros acima definidos, o indicador calcula automaticamente o número máximo de divisões visíveis no mostrador, portanto, não é uma grandeza programável, e necessariamente não é uma grandeza múltipla de 10. O número de divisões é calculado por CAPAC (desconsiderando o ponto decimal) / DEGRAU. Por exemplo, com: DEGRAU = 2 e CAPAC = 09750, o número de divisões é 4875.

- DEGRAU = 1, CAPAC = 02.000, DIVISÕES = 2000
- DEGRAU = 1, CAPAC = 2000.0, DIVISÕES = 20000
- DEGRAU = 2, CAPAC = 200.00, DIVISÕES = 10000
- DEGRAU = 5, CAPAC = 0.2000, DIVISÕES = 400

O próximo passo é programar o indicador para reconhecer a condição de BALANÇA SEM PESO e BALANÇA COM PESO. Esta programação somente deve ser feita após a correta programação dos parâmetros DEGRAU, CAPAC e PAJT, visto que CASAS DECIMAIS é um parâmetro meramente ilustrativo.

Antes da programação do parâmetro BALANÇA SEM PESO (SPESO), deve-se ter certeza de que não há nenhum peso sobre o sistema e que os acessórios que fazem parte do peso morto estejam em seus locais de trabalho. Uma vez acionada a captura da informação de BALANÇA SEM PESO, no mostrador aparece a mensagem "r X.X", onde o valor de X.X deve ser o mais próximo possível de 0.0. Caso contrário, a captura de SEM PESO não será executada com sucesso. O tempo máximo para validação do peso é de 25 segundos. Se o peso referente à balança vazia for lido corretamente, no mostrador aparecerá a mensagem "ERRO SP". Na Seção Tabela de Erros, está relacionada todas as mensagens de ERRO e os procedimentos para sua correção.

SPESO	Captura do valor sem peso aplicado
r 0.0	Indicador calibrando a balança sem peso

O procedimento para a programação do parâmetro BALANÇA COM PESO (CPESO) é similar. Deve-se ter certeza de que o PESO DE AJUSTE está depositado sobre a balança e estabilizado. Uma vez acionada a captura da informação de BALANÇA COM PESO, no mostrador aparece a mensagem "r X.X", onde o valor de X.X deve ser o mais próximo possível de 0.0. Caso contrário, a captura de COM PESO não será executada com sucesso. O tempo máximo para validação do peso é de 25 segundos. Se o peso referente à balança com peso de ajuste for lido corretamente, no mostrador aparecerá a mensagem "CPESO". Se ocorrer qualquer tipo de erro, será mostrada a "ERRO CP". Na Seção Tabela de Erros, estão relacionadas todas as mensagens de ERRO e os procedimentos para sua correção.

CP	ESO	Captura do valor com peso de ajuste
r	0.0	Indicador calibrando a balança com peso

Caso o usuário queira desistir do ajuste em andamento, existe a possibilidade de cancelar os parâmetros e as capturas feitas desde o momento de entrada no menu de ajuste através da opção "Cancel".

CANCEL	Cancela as capturas realizadas até o momento
n	Não confirma o cancelamento das capturas
S	Confirma o cancelamento das capturas

Não é obrigatório que a sequência de programação seja a descrita acima, ou seja, a programação do parâmetro CPESO pode ser feita antes do SPESO, pois o indicador realiza a validação final somente após os dois estágios terem sido realizados, à saída do menu, após pressionado o botão de ajuste por 3 segundos. Não ocorrendo erros em nenhum dos estágios, o indicador mostra a mensagem "CERTO".

Para auxiliar o usuário, a Alfa Instrumentos desenvolveu um mecanismo que avalia a exatidão do ajuste de pesagem por meio de uma escala de notas, para mais detalhes consulte o capítulo 13.6.10 (Ajuste) relacionado ao Alfa Web Monitor.

NOTA: Exatidão refere-se ao quão próximo o valor medido está do valor real. Um sistema de pesagem é considerado exato quando os resultados das medições estão próximos do peso verdadeiro. Alta exatidão implica que o sistema tende a oferecer valores corretos em relação ao valor real.

13 Alfa Web Monitor

Os Indicadores de Pesagem Alfa Instrumentos contam com uma interface Ethernet para a gerência do equipamento e parametrização. Todos os Indicadores são configurados de fábrica com o endereço IP padrão **192.168.0.11** e, para acessar o Alfa Web Monitor, basta digitar o endereço IP na barra de endereço do navegador. Este Monitor é compatível com os principais browsers do mercado e conta com visualização otimizada para acessos em dispositivos móveis. No máximo, podem funcionar simultaneamente **três** páginas do Alfa Web Monitor por indicador de pesagem.

Caso a página não seja carregada em 10 segundos, será necessário configurar o PC (ou dispositivo de acesso) para a rede local. Para acessar o Alfa Web Monitor através de uma rede local é necessário configurar ambos os dispositivos na mesma rede.

O Indicador de Pesagem vem configurado de fábrica com a seguinte configuração:

- Endereço IP ⇒ 192.168.0.11;
- Gateway padrão ⇒ 192.168.0.1;
- DHCP ⇒ desabilitado.

Para configurar o computador com as mesmas características de rede, acesse o **Painel de Controle** em seguida **Central de rede e compartilhamento**.

Tipo de acesso:	
Conexões:	þ

Tipo de acesso: Sem acesso à rede Conexões: 📮 Ethernet 2

Internet Ethernet

Figura 44 – Exibição da central de rede e compartilhamento para configuração Alfa Web Monitor Computadores com mais de uma porta de rede apresentam duas ou mais conexões, verifique em qual porta está conectada ao indicador.

Com a porta identificada, pressione sobre a porta conectada para abrir uma nova janela.

Status de Ethernet	2		
Geral			
Conexão			
Conectividade IPv4	4:	Se	em acesso à rede
Conectividade IPv6	5:	Se	em acesso à rede
Status da Mídia:			Ativo
Duração:			01:49:08
Velocidade:			100,0 Mbp:
Detalhes			
Atividade			
Env	viados —		Recebidos
Bytes:	1.814.029		15.379.98
Propriedades	Desa	tivar	Diagnostica

Figura 45 - Status da porta de rede conectada ao Indicador de Pesagem

Clique no botão Propriedades.

Conectar-se usa			
	indo:		
🕎 TP-Link G	àigabit PCI Express Adapt	ter	
		Configu	urar
Esta conexão ut	iliza os seguintes itens:		
🗹 🐙 Driver (de Ponte		~
Protoco	olo IP Versão 4 (TCP/IPv	(4)	
Protoco	olo do Multiplexador de A	daptador de Rede o	la N
Driver of	de Protocolo LLDP da Mi	crosoft	>
-			-
1.1.1	D 1 1 1		
Instalar	Desinstalar	Propriedad	des
Instalar Descrição	Desinstalar	Propriedad	des
Instalar Descrição Protocolo de de rede de lo entre diversa:	Desinstalar Controle de Transmissão. nga distância que possibi s redes interconectadas.	/IP. Protocolo padrá ilita a comunicação	des ăo
Instalar Descrição Protocolo de de rede de lo entre diversas	Desinstalar Controle de Transmissão nga distância que possibi s redes interconectadas.	Propriedad /IP. Protocolo padrá ilita a comunicação	des ăo

Figura 46 – Propriedades da porta de rede conectada ao Indicador de Pesagem

Selecione a opção Protocolo IP Versão 4 (TCP/IPv4) e pressione o botão Propriedades.

Uma nova janela será aberta, selecione a aba Geral, selecione a opção "Usar o seguinte endereço IP:"

MANUAL DO USUÁRIO INDICADORES DE PESAGEM L	INHA.
3100	D/DS

ropriedades de Protocolo IP Vers	ăo 4 (TCP/IPv4) X
Geral	
As configurações IP podem ser atr oferecer suporte a esse recurso. C ao administrador de rede as config	buídas automaticamente se a rede caso contrário, você precisa solicitar urações IP adequadas.
🔿 Obter um endereço IP autom	aticamente
Olympic Usar o seguinte endereço IP:	
Endereço IP:	192.168.0.10
Máscara de sub-rede:	255.255.255.0
Gateway padrão:	
Obter o endereço dos servido	ores DNS automaticamente
 Usar os seguintes endereços 	de servidor DNS:
Servidor DNS preferencial:	
Servidor DNS alternativo:	
Validar configurações na saío	a Avançado
	OK Cancelar

Figura 47 - Configuração de IP da porta de rede conectada ao Indicador de Pesagem

Configure o Endereço IP com os três primeiros campos iguais ao do Indicador e o último diferente, para não haver conflito. O parâmetro Máscara de sub-rede deve ser igual ao configurado no equipamento. Neste caso, não é necessário realizar a configuração do parâmetro Gateway padrão.

Com os parâmetros devidamente configurados, confirme através do botão OK. Digite o endereço IP do Indicador de Pesagem no navegador para acessar o Alfa Web Monitor.

Observações:

- Ao realizar a configuração de IP fixo para a comunicação entre o Indicador e o computador, este não irá se comunicar na rede da empresa, por não possuir a mesma configuração de rede;
- Para retornar à configuração da porta de rede do computador, acesse novamente as propriedades da porta e mude a opção de "Usar o seguinte endereço IP" para Obter um endereço IP automaticamente.

Ao acessar o IP configurado no indicador através do browser, deverá ser aberta a página inicial do Alfa Web Monitor, apresentando o mesmo peso mostrado no display do indicador.

Figura 48 - Estrutura página inicial Alfa Web Monitor

O Alfa Web Monitor é composto basicamente por seis partes, destacadas na figura acima.

- 1 ⇒ Título da página em exibição;
- 2 ⇒ Menu lateral de acesso;
- 3 ⇒ Título da página em exibição;

- 4 ⇒ Apelido do Indicador de Pesagem;
- 5 ⇒ Conteúdo da página exibida e seus controles;
- 6 ⇒ Barra de exibição do status do sistema

O Alfa Web Monitor possui a seguinte estrutura do menu de acesso:

- Indicador de Pesagem;
- Gráfico de Pesagem;
 - Falta-Sobra
- Níveis:
- Contadora;
- Configurações;
 - 0 Base;
 - Falta-Sobra; 0
 - Níveis; 0
 - Ethernet[.] 0
 - Protocolos de Rede; 0
 - Interface Serial; 0
 - Impressão Serial; 0
 - Saída Analógica; 0
 - Data e Hora; 0
 - Ajuste; 0
- Ez-Swap;
- Status do Sistema:
- Informações;
- Login.

13.1 Indicador de Pesagem

Ao carregar o Alfa Web Monitor no browser, será exibida a tela "Indicador de Pesagem" como visto na próxima figura

Figura 49 – Página Indicador de Pesagem via Alfa Web Monitor

- 1 ⇒ Apelido do Indicador de Pesagem;
- 2 ⇒ Indicações de pesagem (Estável, Zero, Bruto e Líquido);
- 3 ⇒ Pesagem detalhada conforme Ajuste;
- 4 ⇒ Botões de Comando (ZERO, TARA, IMPRIME);

Botão de TARA - visível somente quando o Indicador estiver no modo Peso Bruto. Quando estiver no modo Peso Líquido o botão DESTARA aparecerá e o botão TARA desaparecerá automaticamente.

Nesta tela o usuário poderá, além da leitura de peso, realizar as funções básicas de TARA/DESTARA, IMPRIME e ZERO.

O campo "Pesagem Detalhada" possui informações importantes para que o usuário tenha conhecimento das características metrológicas de seu Indicador de Pesagem. São mostrados os parâmetros do sinal no instante atual. é possível ver o desvio padrão da medição, seu ruído e os sinal original filtrado do conversor analógico-digital.

A tela "Indicador de Pesagem" possui ainda a funcionalidade de display de área em tela cheia. Para ativar esta função basta clicar sobre o apelido (item 1 da 6). Note que no modo tela cheia não é possível realizar qualquer função de TARA e ZERO via Alfa Web Monitor. Para retornar ao modo completo, basta clicar sobre o apelido do Indicador visível na parte superior da tela.

Figura 50 - Página Indicador de Pesagem tela cheia

13.2 Gráfico de Pesagem

A tela Gráfico de Pesagem apresenta ao usuário a variação da pesagem nos últimos 20 segundos em formato gráfico.

Figura 51 – Página Gráfico de Pesagem via Alfa Web Monitor

- 1 ⇒ Apelido do Indicador de Pesagem;
- 2 ⇒ Gráfico com informação de peso;
- 3 ⇒ Indicação de pesagem estável, zero, bruto e líquido;
- 4 ⇒ Informações detalhadas do peso líquido/bruto, tara e zero.

Para melhor visualização dos dados apresentados, o gráfico gerado na curva sinalizada pelo item 2 da Figura 51 possui eixo vertical adaptativo, permitindo a visualização tanto de grandes quanto de pequenas variações. O gráfico apresenta as últimas 100 amostras com uma aquisição de 5 amostras/segundo.

Esta página permite a apresentação no formato display de área em tela cheia, exibindo os blocos 1, 2 e 3. Para exibir e sair deste formato basta pressionar sobre o apelido do Indicador de Pesagem.

13.3 Falta-Sobra

A tela Falta-Sobra é uma alternativa à visualização do display e dos LEDs do equipamento com fidelidade até nas cores apresentadas no bloco 2 da Figura 52 (vermelho para ">100%" e ">110%", verde para "100%" e laranja para os demais).

5 5

1 ⇒ Apelido do Indicador de Pesagem;

- 2 ⇒ Informação de peso, conforme ajuste realizada;
- 3 ⇒ Indicação de Falta-Sobra;
- 4 ⇒ Indicação de pesagem estável, zero, bruto e líquido.

Além da visualização do peso, apelido e do valor percentual do peso atual com base no peso alvo configurado, a tela Falta-Sobra apresenta os dados da pesagem atual (peso estável, zero, bruto/líquido).

Esta página também permite a apresentação no formato display de área em tela cheia, exibindo os blocos 1, 2 e 3. Para exibir e sair deste formato basta pressionar sobre o apelido do Indicador de Pesagem.

13.4 Níveis

Assim como a página Falta-Sobra, a página Níveis é uma alternativa à visualização do display e dos LEDs do equipamento com fidelidade na representação dos níveis. Somado a isso, há ainda um botão de destravar setpoints, para utilizar caso os níveis tenham sido configurados com trava.

Figura 53 - Página Níveis via Alfa Web Monitor

- 1 ⇒ Apelido do Indicador de Pesagem;
- 2 ⇒ Indicação de acionamento dos Níveis;
- **3** ⇒ Informação de peso, conforme ajuste realizado;
- 4 ⇒ Indicação de pesagem estável, zero, bruto e líquido.
- 5 ⇒ Botão DESTRAVAR (ação requer login).

Além da exibição do acionamento de cada saída de nível, a página mostra o peso atual e o estado desse peso exibido (estável, zero, bruto/líquido). O botão destravar, demonstrado no bloco 5, é o correspondente a pressionar ZERO+CNFG no teclado frontal do equipamento e realiza o destravamento daqueles *setpoints* ativos e configurados com função de trava habilitada.

13.4.1 Características elétricas de acionamento dos níveis

Os acionamentos dos níveis são efetuados por relés de estado sólido (SSR), que oferecem alta velocidade de comutação, isolamento galvânico entre os circuitos de controle e de potência, entre outras vantagens.

ĂTENÇÃO: Para efetuar as conexões nas saídas de níveis do Indicador de Pesagem, é fundamental atentar-se às características elétricas permitidas pelo equipamento. As especificações do relé são: **Típico: 24Vcc/ca, 0,5A (**Resistência de Contato 0,5 Ω)

Máximo: 60Vcc/ca, 0,6A(Resistência de Contato 0,8 Ω)

Para aplicações em que o Indicador de Pesagem precise acionar dispositivos que excedam às características elétricas permitidas, recomenda-se o uso da Caixa de Relés Alfa Instrumentos – Mod. 4424 (250 VCA x 10 A).

13.5 Contadora

A página de interação com a função Contadora nos Indicadores de Pesagem via Alfa Web Monitor apresenta uma visão mais intuitiva e objetiva, o que certamente traz uma melhor experiência da funcionalidade para o usuário. A visualização da página é permitida ao usuário sem elevar a sua sessão, porém, para executar as ações e habilitar/desabilitar a interface é necessário realizar login.

Além dos dados já apresentados no display do equipamento, através da visualização web da interface Contadora, é apresentado constantemente e quantidade de peças contabilizada (bloco 2), a quantidade de peças da amostra e o peso médio por peça, os dados relacionados ao peso atual da balança (blocos 3 e 4) e os botões de ação do usuário com a funcionalidade (zero, tara, destara, imprime e captura bloco 5).

O modo operacional do módulo é o mesmo do descrito no capítulo Contadora (CONTA).

MANUAL DO USUÁRIO INDICADORES DE PESAGEM LINHA 3100D/DS

Através do primeiro bloco do menu Base via Alfa Web Monitor, o usuário pode redefinir a modo de exibição personalizando sua visualização da forma como preferir, alternando entre claro e escuro, conforme demonstrado na Figura 56.

Figura 56 – Diferença entre exibição do Alfa Web Monitor no modo escuro e claro

Outro parâmetro possível de ser configurado apenas através do Alfa Web Monitor é o apelido do dispositivo (item 2). Ao dar um apelido a esse dispositivo, todas as páginas que contêm o nome serão atualizadas com o novo nome e o título da aba do browser também será redefinido automaticamente.

O campo Amplitude estável pode receber valores de 1 a 1000. Sua funcionalidade está relacionada à qualidade do ajuste de pesagem e ajuda o usuário a determinar uma faixa de estabilidade aceitável para seu sistema. Quanto maior o valor mais tolerante será a indicação de estabilidade.

O restante das opções (itens 3 a 6) são itens abordados anteriormente e possíveis de serem alterados de maneira semelhante pelo menu do Indicador de Pesagem via teclado do dispositivo.

13.6.2 Falta-Sobra

A página de configuração do módulo Falta-Sobra apresenta uma maneira de configuração mais amigável ao usuário através dos controles do Alfa Web Monitor, executando as mesmas funções do menu configurável via teclado do Indicador de Pesagem.

Figura 57 – Página de configuração Falta-Sobra via Alfa Web Monitor

- 1 ⇒ Chave de habilitação da interface Falta-Sobra;
- 2 ⇒ Configuração de visualização do Falta-Sobra (ponto ou barra);
- 3 ⇒ Configuração de tolerância;
- 4 ⇒ Configuração de sinalização;
- 5 ⇒ Configuração do alvo do Falta-Sobra com botão de capturar.

13.6.3 Níveis

A configuração da funcionalidade de saída de níveis pode ser também configurada através da interface Alfa Web Monitor. No primeiro bloco de configurações, definido pelo item 1 da Figura 58Figura 58, podese escolher entre a utilização do setpoint 0 como Vazia ou Nível 0, a histerese e a utilização de lógica invertida em seus acionamentos.

O conteúdo do bloco 2 está diretamente relacionado com o valor definido no campo setpoint 0. Caso escolhido a opção Vazia, o campo se adaptará para receber apenas o valor de vazia; já no caso de a escolha ser Nível 0, o campo se reacomoda para receber o valor de acionamento do nível e a possibilidade de travar setpoint.

O bloco 3, por sua vez, é o responsável por definir e ajustar as configurações dos níveis restantes. O bloco se adapta automaticamente a

Δ Tara Captura Figura 54 - Página Contadora via Alfa Web Monitor

1 ⇒ Chave de habilitação da interface Contadora (ação requer login);

2 ⇒ Quantidade de peças obtida pelo Indicador de Pesagem;

3 ⇒ Indicação de pesagem estável, zero, bruto e líquido;

4 🗢 Dados de peso, tara e das peças contadas (peso médio e quantidade por amostra).

5 ⇒ Botões ZERÓ, TARA, IMPRIME, DESTARA E CAPTURA.

13.6 Configurações

O Indicador de Pesagem permite através do Alfa Web Monitor a configuração de todos os parâmetros disponíveis via teclado. Para acessar cada página de configuração é necessário que a sessão de acesso seja autenticada (login).

13.6.1 Base

A página de configuração Base possui praticamente as mesmas funções do menu base disponível através da navegação via teclado do Indicador de Pesagem, com exceção das funções senha, intensidade do display, número da PCB e leitura direta do conversor AD, mas com a adição de funcionalidades próprias do Alfa Web Monitor.

Figura 55 – Página de configuração Base via Alfa Web Monitor

- 1 🗢 Chave de alteração entre modos de exibição Claro/Escuro;
- 2 ⇒ Configuração do Apelido;
- 3 ⇒ Configuração de Zero (Modo e zero inicial);
- 4 ⇒ Configuração de Tara (Modo e destara automática);
- 5 ⇒ Configuração de Filtro Digital e Amplitude de Estável;
- 6 ⇒ Configuração tecla IMP e acumulação;

possibilidade de ajuste apenas da quantidade de níveis que aquele determinado modelo em questão possui.

Figura 58 – Página de configuração de Níveis via Alfa Web Monitor

- 1 ⇔ Configurações gerais de níveis; 2 ⇔ Configuração Nível Vazia/Nível 0;
- 3 ⇒ Configurações níveis 1 ao 7.

13.6.4 Ethernet

A correta configuração da interface Ethernet é imprescindível para o funcionamento adequado do Alfa Web Monitor e dos protocolos de rede. Além da interface de configuração através do teclado e display do Indicador de Pesagem, o Alfa Web Monitor possui uma página de configurações simples e amigável para realizar estes ajustes.

Figura 59 – Página de configuração Ethernet via Alfa Web Monitor

- 1 ⇒ Configuração DHCP;
- 2 ⇒ Configuração de Interface;
- 3 ⇒ Configurações IP, máscara de Subrede e Router.

No primeiro bloco da Figura 59 há a possibilidade de configuração automática dos parâmetros da interface ethernet (endereco IP, máscara de subrede e router) através do protocolo DHCP (Dynamic Host Configuration Protocol). Para realizar esta configuração basta ativar a chave DHCP e aquardar o retorno do servidor DHCP. Com a correta atribuição automática de IP e parâmetros, é possível verificar o novo IP de entrada no Alfa Web Monitor navegando no menu do dispositivo através de seu teclado próprio. Nota: Para utilizar o DHCP é necessário estar disponível na rede um servidor DHCP responsável por conceder e controlar os endereços IP e os dispositivos desta rede.

No segundo bloco de informações é possível ver o nome genérico dado a interface, seu endereco MAC e o estado do link daguela conexão, mostrando o estado da conexão entre o Indicador e o outro extremo de conexão.

Alternativamente à configuração automática via DHCP, o usuário pode definir as configurações da porta Ethernet por meio de um IP fixo definido. No item 3 sinalizado na Figura 59Figura 59 é possível ao usuário redefinir estes parâmetros. Nota: Ao realizar a troca dos parâmetros de conexão o Indicador perde a comunicação com àquela sessão, sendo necessário reconfigurar a conexão entre o PC e o Indicador ou alterando o endereco IP de entrada no browser.

13.6.5 Protocolos de Rede

Os Protocolos de Rede, no ambiente do Alfa Web Monitor, possuem as mesmas características e opções de configuração do menu disponível via teclado do Indicador de Pesagem. No primeiro bloco (representado pelo item 1 na Figura 60Figura 60) é possível ao usuário realizar as definições gerais do módulo, como a escolha entre versão (standard ou advanced), qual o endereço, protocolo (Modbus RTU over Ethernet, Modbus TCP Transmissão Contínua, Alfa ASCII, Transmissão Padrão 3102) e modo de operação (TCP Servidor, TCP Cliente ou UDP). Os dados de interface local e remota são possíveis de serem alterados pelos blocos 2 e 3 respectivamente.

O modo de configuração e atuação dos protocolos de rede no Alfa Web Monitor são idênticos ao descrito no item capítulo 6 (Protocolos de Rede (NET PR).

Figura 60 - Página de configuração de Protocolos de Rede via Alfa Web Monitor

- 1 ⇒ Configuração geral dos protocolos de rede;
- 2 ⇒ Configuração Porta Local;
- 3 ⇒ Configurações IP e Porta Remota.

13.6.6 Interface Serial

A página Alfa Web Monitor responsável por gerenciar a interface serial é mais uma página alternativa à configuração via teclado do dispositivo. De maneira semelhante, através deste submenu é possível o usuário escolher e controlar os parâmetros (versão, endereço, protocolo, baud rate e stop bits) das portas RS-232 e RS-485 de comunicação (COM) contidas no Indicador de Pesagem.

Interfac	e Serial
Versão	STD -
Endereço	
Padrão	RS-485 -
Protocolo	Modbus-RTU 👻
Baud Rate	115.2 kbps 👻
Stop Bits	

Figura 61 – Configuração da Interface Serial via Alfa Web Monitor

13.6.7 Impressão Serial

O submenu de configuração "Impressão Serial" é o responsável por controlar o protocolo e a quantidade de impressões que serão executadas a cada acionamento da tecla IMP. Dentre as opcões disponíveis o usuário pode escolher entre o protocolo PAD (Padrão), EPL (Eltron Programming Language) ou ZPL (Zebra Programming Language) e a quantidade de impressões consecutivas (aceitos valores entre 1 e 9).

Figura 62 – Página de configuração de Impressão Serial via Alfa Web Monitor

13.6.8 Saída Analógica

O Alfa Web Monitor traz consigo a possibilidade de ajuste da interface de saída analógica em corrente 4/20mA ou 0/20mA. Seu funcionamento, conforme descrito no capítulo Saída Analógica (ANALOG), ocorre de semelhante modo na página web e pode ser configurado da mesma maneira.

Figura 63 – Página donfiguração de Saída Analógica via Alfa Web Monitor

- 1 ⇒ Referência de peso (Bruto/Líquido) e tipo de saída analógica;
- 2 ⇒ Configuração primeiro ponto;
- 3 ⇒ Configuração segundo ponto;
- 4 ⇒ Gráfico de ajuste da saída analógica.

No item 1, destacado na Figura 63 Figura 63, é possível escolher entre a operação do indicador com a balança em modo de peso bruto/líquido e o comportamento de saída aceitando ou ignorando os valores de peso negativo (modo linear e modo espelhado).

Nos blocos de configuração sinalizados pelos números 2 e 3 é possível configurar os dois pontos extremos responsáveis por traçar a reta de ajuste e atrelar o peso à faixa de corrente. Com essa definição bem executada, o gráfico de ajuste mostrando todos os pontos intermediários é facilmente compreensível na curva demonstrada pelo bloco 4.

13.6.9 Data e Hora

O Indicador de Pesagem possui relógio de tempo real interno, indispensável para o pleno funcionamento do produto. O relógio de tempo real deve estar marcando o valor de data e hora corretos para que todas as funções do produto vinculados à horários estejam corretamente configuradas.

Figura 64 – Página de configuração de Data e Hora via Alfa Web Monitor

1 ⇒ Configuração de data e hora com possibilidade de ajuste automático;

2 ⇔ Configuração de fuso horário e horário de verão.

A configuração só pode ser realizada numa sessão autorizada (com login realizado) e, para isso, há duas opções: realizar o autoajuste ou configurar manualmente.

Caso deseje realizar a configuração do relógio do equipamento baseando-se na data e hora do dispositivo em que está sendo executado o Alfa Web Monitor, basta pressionar o botão **Autoajuste** demonstrado no bloco 1. Se a preferência for por um ajuste manual, pode-se escolher a data e hora nos campos do bloco 1.

O Indicador de Pesagem permite ainda a configuração do fuso horário da região em que o equipamento será instalado e da existência ou não de horário de verão na região. Por padrão de fabricação, os equipamentos vêm configurados com fuso horário (GMT-03:00) Brasília e sem horário de verão.

13.6.10 Ajuste de Pesagem

A página Ajuste de Pesagem está acessível no Alfa Web Monitor de duas formas distintas. Quando o indicador não está no modo Ajuste a página mostr<u>a os dados do Ajuste de Pesagem vigente.</u>

Ajusto	
Qualidade do Ajuste	5
Casas Decimais	
Degrau	
Capacidade	10.100kg
Peso de Ajuste	5.000kg
Sem Peso - Ruído	0.733 nV/V
Com Peso - Ruído	1.363 nV/V
Data do Ajuste	19/06/2024 10:21:10

Figura 65 – Dados do Ajuste vigente

Se o Indicador estiver no modo de ajuste e com nível de acesso elevado (login), essa página permite uma melhor visualização do ajuste de pesagem executado, de sua qualidade e de sua confiabilidade.

Figura 66 - Página de configuração de Ajuste via Alfa Web Monitor

- 1 ⇒ Dados do peso em tempo real e do ajuste em execução;
- 2 ⇒ Configurações dos parâmetros de ajuste de pesagem;
- 3 ⇒ Comandos para realização do ajuste de pesagem;
- 4 ⇒ Dados de ajuste de pesagem executado;

Para realizar um novo ajuste, com a página acessível (isto é, indicador em modo de ajuste e login realizado), ajustar os parâmetros de configuração disponíveis no bloco 2 e executar os comandos Sem Peso e Com Peso disponíveis no bloco 3. Durante a execução dos comandos "Sem Peso" e "Com Peso", é possível observar os limites de ruido com o mesmo padrão de cores do led de status no painel frontal do equipamento durante os comandos de captura de peso.

COR	LIMITE DE RUIDO
Violeta	Limite de Ruido ≤ 2000nV/V e >200nV/V
Índigo	Limite de Ruido ≤ 200nV/V e >20nV/V
Azul	Limite de Ruido ≤ 20nV/V

Após a conclusão de um comando ou ajuste executado, os dados completos e próprios daquele ajuste são possíveis de serem verificados através do bloco 4.

O ajuste de pesagem é essencial para ensinar ao sistema de pesagem a relação entre o peso aplicado e o sinal eletrônico gerado pela célula de carga. Isso é feito para garantir que cada medida de peso corresponda corretamente a um valor de sinal elétrico específico, o que é fundamental para a exatidão e a precisão do sistema.

Em um sistema com célula de carga linear, a relação entre o peso aplicado e o sinal eletrônico gerado (em mV/V) pode ser representada por uma **reta** que conecta esses dois parâmetros, peso e sinal.

Para calcular a reta de ajuste, o sistema precisa de dois pontos de referência:

- Sem Peso: ponto de interseção da reta (offset), indicando o sinal de saída da célula de carga quando nenhum peso é aplicado. Este valor é essencial para corrigir variações no sinal de saída quando o sistema está vazio.
- **Com Peso**: ponto que define o ganho da reta (ou inclinação), baseado em uma carga conhecida. Este ponto ajuda o sistema a calcular a relação entre o peso e o sinal.

Figura 67 - Curva de Ajuste

Note que a obtenção destes valores pode influenciar na exatidão dos sistemas de pesagem. Por isso é desejável que durante o processo de ajuste o sistema esteja estável e com a menor influencia possível de ruídos. Os ruídos podem ter origem tanto por fatores mecânicos (como vibrações ou movimentos excessivos da balança, agarramentos) quanto elétricos (como interferências eletromagnéticas ou flutuações de tensão).

Para auxiliar o usuário a Alfa Instrumentos desenvolveu um mecanismo que quantifica os níveis o ruido durante o processo de ajuste de pesagem. Após a avaliação destes níveis de ruído o software qualifica o ajuste através de uma escala de notas.

As notas auxiliam a interpretar a exatidão do sistema apenas no momento do ajuste, levando em consideração os fatores que podem impactar diretamente o desempenho do sistema neste momento. Desta forma com essas informações, o usuário pode avaliar se o ajuste precisa ser repetido, se é necessário inspecionar algum componente da instalação ou, ainda, decidir que, apesar da nota obtida, o ajuste é adequado para sua aplicação.

	A classificaçã	io por notas utiliza	o seguinte critério de análise:
--	----------------	----------------------	---------------------------------

NOTA	CRITÉRIO
5	O ruido durante o ajuste é extremamente pequeno. A exatidão será muito alta.
4	O ruido durante o ajuste é pequeno. A exatidão será alta.
3	O ruido durante o ajuste é moderado. A exatidão é aceitável, mas ligeiramente inferior.
2	O ruido durante o ajuste é elevado. A exatidão começa a diminuir, mas ainda é considerada razoável.
1	O ruido durante o ajuste é grande. A exatidão será baixa.
0	O ruido durante o ajuste é extremamente grande. A configuração não é aceitável, pois a exatidão é inadequada.

Observe abaixo a influência que os ruídos podem causar no resultado do ajuste:

Como podemos ver na área azul do gráfico, o ruído cria uma faixa de variação tanto na captura de "Sem Peso" quanto na de "Com Peso". Esse ruído ocorre devido a diversos fatores, como interferências elétricas, vibrações mecânicas e oscilações no ambiente, causando pequenas flutuações no sinal capturado pelo sistema.

Faixa de Ruído: Cada captura "Sem Peso" ou "Com Peso" pode gerar valores ligeiramente diferentes devido ao ruído, resultando em uma faixa de valores possíveis ao invés de um único valor fixo.

Consequência para a Reta de Ajuste: Como o cálculo da reta depende diretamente dos valores capturados, essas flutuações podem levar a pequenas variações na inclinação e no offset da reta. Em capturas consecutivas, (no ajuste) é possível que o sistema obtenha retas ligeiramente diferentes, o que afeta a exatidão.

O intervalo indicado pela seta verde no gráfico representa a faixa de possíveis valores do sinal (em nV/V) para o mesmo peso aplicado, devido ao ruído. Isso significa que, para um mesmo peso, o sistema pode ler valores de sinal levemente distintos em cada captura de peso durante o ajuste.

No segundo exemplo é possível observar que a faixa de ruído é visivelmente menor em comparação ao anterior. Com uma faixa de ruído menor, a variação nos valores capturados de "Sem Peso" e "Com Peso" é reduzida, o que significa que obteremos:

Capturas Consecutivas Mais Precisas: Como a faixa de ruído é menor, as capturas realizadas em momentos diferentes tendem a apresentar valores mais próximos, tanto na condição de "Sem Peso" quanto na de "Com Peso". Isso reduz a probabilidade de que o sinal varie muito entre capturas, considerando que o peso seja mantido constante.

Reta de Ajuste Fiel: Com uma menor variação nos valores capturados, a inclinação e o offset da reta de ajuste se tornam mais estáveis. Isso significa que as retas obtidas em diferentes momentos serão muito parecidas, aumentando a exatidão do sistema. Em outras palavras, a reta resultante representará de forma mais fiel a relação peso/sinal.

Maior Exatidão do Sistema: A exatidão se refere à proximidade entre a medida real e a medida registrada. Como o ruído foi minimizado, as variações nas capturas são menores, o que permite que o sistema produza uma medida de peso mais próxima do valor real.

Portanto, quanto menor o ruído no sistema, maior será a probabilidade de obter capturas consecutivas com valores semelhantes. Isso resulta em retas de ajuste mais consistentes e aumenta a exatidão do sistema de pesagem.

NOTA: Ajustes realizados com peso de Ajuste próximos ao valor de capacidade máxima do sistema tendem a ter notas mais altas.

Observe as representações abaixo.

Para ambos os casos os níveis de ruídos são iguais, a única diferença é o peso de ajuste.

Cada exemplo representa o resultado obtido de dois ajustes consecutivos no mesmo gráfico. Para os dois gráficos cada reta foi obtida com a captura de "Sem Peso" sendo influenciada pela subtração do ruído e a captura do valor "Com Peso" influenciada pela soma do ruido (kaju_2) a outra reta (no mesmo gráfico) foi obtida com a captura de "Sem Peso" sendo influenciada pela soma do ruído e a captura do valor "Com Peso" influenciada pela subtração do ruído ruído e a captura de "Sem Peso" sendo influenciada pela soma do ruído e a captura do valor "Com Peso" influenciada pela subtração do ruído (kaju_1).

Perceba que no primeiro exemplo a amplitude da exatidão nas extremidades das retas é menor comparando com o segundo exemplo.

Figura 71 - Influência do Peso de Ajuste - Exemplo 2

É muito importante o usuário compreender que a obtenção de uma excelente nota de ajuste não garante precisão no sistema de pesagem se este é instável por conta de ruídos ou até mesmo por equívocos conceituais na instalação (silos, tubulações fixas ou flexíveis, escadas, válvulas) não evidenciados no processo de ajuste. O exemplo abaixo sugere quatro variações de um sistema de pesagem.

A imagem mostra quatro configurações de instalação para um tanque com células de carga, onde cada configuração é numerada de um a quatro. O objetivo dessas ilustrações é demonstrar como o posicionamento dos componentes de entrada e saída — especialmente da válvula, do tubo flexível (mangote) e dos pontos de fixação — pode afetar a precisão da pesagem.

Figura 72 - Exemplo de Aplicação – Tanque

A instalação recomendada para evitar interferências mecânicas na pesagem é a ilustrada na imagem número quatro. Nesta configuração, o tubo flexível (mangote) é posicionado entre a válvula de entrada e o tanque. Isso permite que o mangote absorva as vibrações e pressões da linha de entrada, evitando que essas forças externas interfiram no sistema de pesagem.

Nas imagens dois e três, o tubo flexível está instalado após a válvula e o ponto de fixação na entrada. Essa configuração permite que as forças exercidas pela válvula e pela tubulação cheguem diretamente ao tanque, causando potencial interferência mecânica e comprometendo a precisão da pesagem.

Na instalação ilustrada pela imagem número um, apesar de a entrada ter a configuração ideal (com o mangote posicionado entre a válvula e o tanque para absorver vibrações), a saída tem uma configuração que pode interferir na pesagem. Como o tubo flexível (mangote) está instalado antes da válvula na saída, ele não isola completamente o tanque das influências mecânicas do processo de esvaziamento.

Durante o enchimento ou esvaziamento, o mangote pode agir como uma mola. Isso ocorre porque o mangote tem uma flexibilidade que permite pequenos movimentos, o que pode "empurrar" ou "puxar" o tanque conforme há variações de pressão e fluxo. Esses movimentos resultam em forças adicionais no tanque, causando uma influência indesejada na pesagem.

13.7 EZ-Swap

A informação do peso para muitos processos é crítica, onde o tempo de parada é muito caro, podendo prejudicar a linha produtiva. Entendendo essa responsabilidade foi desenvolvido o módulo **EZ-Swap**.

O módulo tem como principal objetivo reduzir o tempo de parada do sistema pesagem, na troca do Indicador de Pesagem, reduzindo assim os custos de parada.

Após a configuração do Indicador, ao acessar o menu do EZ-Swap é aberta a tela de configuração (ação requer login).

Figura 73 – Página de configuração EZ-Swap via Alfa Web Monitor

1 ⇒ Status do sistema de arquivos;

2 ⇔ Botão de gerar arquivo de Ez-Swap com extensão .json, ao clicar em Gerar uma caixa de texto será aberta para criação do nome do arquivo;

3 ⇔ Região que contém a lista de arquivos de backup e os botões de ação (Upload, download, delete)

4 ⇒ Botão para download do arquivo que contém o log da última restauração do sistema.

É possível, através do EZ-Swap dos Indicadores de Pesagem, armazenar **até 10 arquivos** de backup em sua memória interna, possíveis de serem visualizados no bloco 3 da acima.

IMPORTANTE: A utilização deste recurso (EZ-Swap), não suprime a necessidade da calibração para garantir a rastreabilidade das medições do sistema de pesagem.

13.7.1 Como utilizar o EZ-Swap

Após realizadas as configurações do Indicador de Pesagem, acessar o submenu EZ-Swap (ação requer autenticação). Esta tela inicial permite gerar um novo arquivo de recuperação ou realizar a restauração daquele Indicador a partir de outro arquivo.

Para realizar as ações do módulo, o sistema deve estar com status **Pronto**. Em caso de sistema em manutenção, aguardar o fim da manutenção para iniciar o processo. Só é possível gerar ou restaurar um arquivo EZ-Swap com o canal de pesagem habilitado.

13.7.1.1 Gerar o arquivo de recuperação

A geração do arquivo de recuperação do sistema (EZ-File) é muito simples. Para que esta ação seja efetiva o canal de pesagem deve estar habilitado. Através do submenu EZ-Swap, pressionar o botão **Gerar** indicado no item 2 da Figura 73Figura 73. Neste momento, o sistema deve retornar uma caixa de texto para o usuário especificar o nome do arquivo de recuperação a ser gerado. Ao confirmar a geração com o nome dado, o sistema deve carregar na lista de "Arquivo de backup" o novo arquivo gerado. Este arquivo pode, caso desejado, ser baixado no computador que está executando o Alfa Web Monitor pressionando o botão **Download**.

13.7.1.2 Restaurar o Sistema

O Indicador de Pesagem permite ao usuário restaurar o sistema utilizando o arquivo gerado previamente, ou pelo arquivo gerado no mesmo momento, ou gerado por outro Indicador (sendo ou não do mesmo modelo).

Figura 74 - Fluxos de restauração do sistema EZ-Swap

Para restaurar um sistema basta seguir as seguintes etapas:

- 1. Garantir que o canal de pesagem está habilitado.
- 2. Sistema deve estar em modo Ajuste (essa ação requer login)
- 3. Acessar a página EZ-Swap (essa ação requer login)
- Caso exista o arquivo de restauração desejado na memória interna, selecionar o arquivo. Caso não haja o arquivo na memória interna, clicar no botão Upload e escolher o arquivo nos arquivos do PC.
- 5. Com o arquivo desejado clicado (este deve estar na cor laranja), no final da página, clicar em **Restaurar**
- Na caixa de mensagem exibida, confirmar se o nome do arquivo corresponde ao arquivo que deseja recuperar as configurações.
- 7. Clicar em Sim e aguardar a mensagem de restauração concluída com sucesso

13.8 Status do Sistema

A página Status do Sistema apresenta ao usuário do Alfa Web Monitor a mais completa representação do sistema de status do Indicador de Pesagem, também apresentado no LED de sua interface frontal. Em sua primeira janela, definida como Status Atual, apresenta a representação do estado atual do sistema, podendo ser OK (verde), ATENÇÃO (laranja) ou ERRO (vermelho). Uma representação simplificada desses status apresentados estão presentes no rodapé de todas as páginas do Alfa Web Monitor.

No bloco descrição consta um detalhamento maior do erro ou do aviso de atenção apresentado pelo dispositivo, apresentando tanto o código do aviso/erro quanto a descrição para melhor entendimento do usuário. No caso de sistema OK, apenas um aviso de sistema funcionando normalmente.

É possível acessar essa página em qualquer momento pressionando a barra inferior presente em todas as páginas do Alfa Web Monitor.

Figura 75 – Página Status do Sistema via Alfa Web Monitor

13.9 Informações

A página Informações exibe ao usuário do Indicador de Pesagem informações únicas daquele dispositivo. Esses dados são relevantes para possíveis contatos com a assistência técnica da Alfa Instrumentos.

MANUAL DO USUÁR	IO INDICADORES	DE PESAGEM L	INHA
		3100	D/DS

•	Sistema	OK: LEI	D piscando	verde
---	---------	---------	------------	-------

Nos casos de falha e atenção, uma maneira de entender melhor o erro ou aviso relacionado é acessando o Alfa Web Monitor e navegando até o menu Status do Sistema.

Ao acessar o menu do equipamento, o LED de status se apagará e poderá acender/piscar durante interações do usuário ao realizar alguma configuração do equipamento. Nestas condições o LED poderá acender/piscar nas cores:

- Branco: Durante a configuração da intensidade do display;
- Violeta: Durante o Ajuste de pesagem o Limite de Ruido menor ou igual a 2000nV/V e maior que 200nV/V;
- Índigo: Durante o Ajuste de pesagem o Limite de Ruido menor ou igual a 200nV/V e maior que 20nV/V;
- Azul: Durante o Ajuste de pesagem o Limite de Ruido menor ou igual a 20nV/V;
- Laranja: Durante o Ajuste de pesagem o quando valor a ser configurado encontra-se fora da faixa válida;

16 Mensagens do Sistema

Ao longo da operação, o indicador mostra mensagens informativas e de alarme, informando suas condições de operação e resultados da programação de parâmetros. A seguir estão todas relacionadas e seus respectivos significados:

X.XX.XXX	REVISÃO DE PROGRAMA do indicador quando este é energizado, representada pelos números X.XX.XXX
Pronto	Indicador está pronto para ser utilizado
SobrE	Peso excedeu o valor programado no parâmetro CAPAC (CAPACIDADE DA BALANÇA)
SAtUrA	Conversor analógico-digital está fora da faixa de conversão. As prováveis causas podem ser: células invertidas ou danificadas, em sobrecarga, ou falha do conversor analógico-digital
ACU	Comando de ACUMULAÇÃO DE PESO foi realizado com sucesso
totAL	Mensagem que antecede a visualização do TOTAL ACUMULADO pelo indicador
n=XXX	QUANTIDADE DE ACUMULAÇÕES realizadas desde última operação de ZERA TOTAL, representada pelos números XXX
Pd	Mensagem que antecede a visualização da MÉDIA do TOTAL ACUMULADO pelo indicador
So LEr	Parâmetros do indicador estão disponíveis no modo APENAS LEITURA
CERTO	Ajuste aceita corretamente

17 Dispositivos de proteção

Ao analisar comparativamente (benchmark) os Indicadores de Pesagem Alfa Instrumentos linha 3100D e linha 3100DS é importante considerar a capacidade de sobrevivência a condições adversas proporcionada pelo impressionante arsenal de dispositivos de proteção.

Células de carga

- Limitador de corrente de +E;
- Grampeador de surto em +E;
- Grampeador de tensão em +S, -S, +I, -I de alta precisão;
- Limitador de corrente em +S, -S, +I, -I;
- Filtros de RF (todas linhas);
- Ilha de proteção contra interferência interna.

Serial de comunicação RS-485

- Limitador de curto e descargas eletrostáticas até 600 W;
- Filtros de RF (todas linhas);
- Isolação galvânica com conversor DC / DC interno;
- Circuito para casamento de impedância para fim da linha (chave interna).

Serial de comunicação RS-232

Proteção contra descarga eletrostática até ± 2 kV;

dicador de Pesage 3107 WebMonito 10 1.0.0 Firmware Hardware Número de série 0x00123456 Endereço MAC Ethernet 70-53-3F-00-25-1B Data e hora 21/06/2024 11:13:33 Fuso horário (GMT-03:00) Brasilia Horário de verão Desabilitado

Informações

Figura 76 – Página Informações via Alfa Web Monitor

13.10 Login

O submenu Login é um caminho de acesso direto a interface de elevação do nível de acesso no ambiente do Alfa Web Monitor. Essa elevação no nível de acesso é importante para realizar diferentes configurações no aparelho.

Para realizar o login, a senha padrão para os Indicadores de Pesagem é **alfa123**. O login está sempre atrelado a um identificador único universal daquela sessão, isto é, em diferentes navegadores ou diferentes abas não há o compartilhamento de nível de acesso, deve-se realizar o login individualmente para cada acesso.

Após realizado o login, cada sessão tem uma duração de 5 minutos. Após decorrido esse tempo, a sessão diminuirá seu nível de acesso automaticamente e, caso seja necessário, o usuário deve realizar login novamente. Para desconectar e abaixar o nível de acesso em qualquer momento, basta clicar no submenu Logoff.

14 Comando remoto

O indicador possui entrada de Comando Remoto, atuando em paralelo com as teclas <ZERO>, <TARA>, <IMP>, <CNFG>. As linhas são protegidas e suportam tensões reversas.

Todas as funções são acionadas em nível lógico 0 por contato aos pinos GND e possuem pull-up internos para +5V, ou seja: nível lógico 1 quando abertas.

15 LED de Status

Em seu painel frontal, o indicador conta com um LED multicolorido para indicar o estado atual do sistema ou o resultado de uma ação do usuário.

Quando mostrando peso, o LED pode estar em três estados distintos:

- Sistema com falhas: LED piscando vermelho (ocorre em caso de falhas comprometedoras do indicador)
- Sistema em atenção: LED piscando laranja (ocorre caso alguma configuração esteja fora do estado padrão, sem comprometer o sistema)

MANUAL DO USUÁRIO INDICADORES DE PESAGEM LINHA 3100D/DS

• Filtros de RF (todas linhas).

Teclado do painel frontal

- Supressor de tensão transiente contra descarga eletrostática (todas teclas);
- Filtro de RF (todas linhas);
- Proteção ambiental caixa IP69K;
- Calota mecânica banhada à ouro.

Comando Remoto

- Filtros de RF: todas linhas;
- Porta schmidt trigger: todas linhas.

Relés de Estado Sólido (SSR) - Saídas de Nível

- Número de ciclos indeterminado
- Varistores contra picos de tensão (todos os contatos);
- Isolação galvânica > 1000 Vrms.

Fonte de alimentação

- Filtro de RF;
- Proteção contra polaridade invertida;
- Fontes chaveadas e lineares internas = proteção contra oscilações de alimentação, ripple e ruído conduzido;
- Chassis da caixa aterrado ao polo (-) da fonte (segurança).
- Saída analógica
- Filtro de RF;
- Isolação galvânica com conversor DC / DC interno;
- Grampeador de tensão direta ou reversa vinda do exterior;
- PTC para limitação de sobrecorrente;
- Proteção contra sobre tensão por diodo supressor de transiente de tensão (TVS);
- Regulador de tensão independente;
- Alarme visual (LED) de loop aberto.

Placa de Circuito Impresso

- Resina conformal coating que protege a placa contra umidade, contaminantes, corrosão, abrasão, solventes e eletromigração;
- Filme isolante entre placa e carcaça.

18 Tabela de Erros

FRRO	CAUSA / ACÃO CORRETIVA
nAn	Ajuste inválida ou imprecisa.
SP	Peso sobre a balança está instável durante o estágio de SEM PESO. Ação corretiva: verificar fixação dos cabos das células, caixas de junção e estrutura da plataforma.
СР	Peso sobre a balança está instável durante o estágio de COM PESO. Ação corretiva: verificar fixação dos cabos das células, caixas de junção e estrutura da plataforma.
CAP	Falha da captura do falta-sobra. Ação corretiva: verificar se o peso está instável ou em saturação.
GEN	Erro genérico.
VAL	Valor configurado fora do intervalo permitido. Ação corretiva: verificar o intervalo permitido de configuração e redefinir para um valor dentro deste.
SEN	Senha inválida. Ação corretiva: Inserir a senha correta.
01	Ajuste inválido. Ação corretiva: Refazer o ajuste de pesagem com parâmetros válidos.
03	Falha de ajuste. Ação corretiva: Refazer o ajuste buscando melhorar sua qualidade.
04	Ajuste impreciso. Ação corretiva: Refazer a ajuste com o intuito de diminuir a sua incerteza.

ERRO	CAUSA / AÇÃO CORRETIVA	
05	Falha no display de 7 segmentos. Ação corretiva: Entrar em contato com a assistência técnica da Alfa Instrumentos.	
06	Falha no display de 7 segmentos. Ação corretiva: Entrar em contato com a assistência técnica da Alfa Instrumentos.	
07	Falha no display de 7 segmentos. Ação corretiva: Entrar em contato com a assistência técnica da Alfa Instrumentos.	
08	Falha no display de 7 segmentos. Ação corretiva: Entrar em contato com a assistência técnica da Alfa Instrumentos.	
09	Falha no circuito RTC. Ação corretiva: Entrar em contato com a assistência técnica da Alfa Instrumentos	
10	Falha no circuito RTC. Ação corretiva: Entrar em contato com a assistência técnica da Alfa Instrumentos	
11	Falha no circuito RTC. Ação corretiva: Entrar em contato com a assistência técnica da Alfa Instrumentos	
12	Falha no sistema de pesagem. Ação corretiva: Entrar em contato com a assistência técnica da Alfa Instrumentos	
13	Falha na configuração do produto. Ação corretiva: Entrar em conta com a assistência técnica da Alfa Instrumentos	

19 Especificações

	3100D	3100DS
Alimentação	9 a 32Vcc, corrente contínua	
Consumo	Máximo 12W (32 células de 350Ω, níveis acionados, linhas de comunicação em curto e alta temperatura ambiente) Típico: 4,5W	
Temperatura de operação	5°C a 50°C	
Temperatura de armazenagem	-25 a 70°C	
Peso	1,7kg	500g
Dimensões	230 x 180 x 80 mm	180 x 120 x 28 mm
Grau de Proteção	IP69K com os cabos corretamente vedados nos prensa-cabos	Frontal IP67

Operacionais

- Valor de DEGRAU: 1, 2, 5, 10, 20, 50;
- Número de DIVISÕES: até 100.000 no display;
- CAPACIDADE: até 99.999 divisões independentemente da posição do ponto decimal;
- Faixa de captura do ZERO: ± 2% da CAPACIDADE com referência no parâmetro SEM PESO;
- Velocidade de variação para AUTOZERO: < 0,5 div/seg;
- Detecção de movimento: > 1 divisão;
- Velocidade de conversão: 60 ciclos/seg;
- Retenção dos dados de ajuste e parâmetros na memória não volátil: 40 anos;
- Precisão dos cálculos internos: 32 bits;
- Taxa de atualização do Display em 100ms.

Saída analógica

- Resistência de loop: até 600Ω;
- Impedância de saída: > 100MΩ;
- Resolução do conversor D/A: 16 bits;
- Tempo de resposta: 0,016 seg.

Interfaces Seriais RS-232 e RS-485

- Proteção contra descargas eletrostáticas de ± 15 kV;
- Taxa de comunicação de 9.600 a 115.200 bps.

Saídas de Níveis

Linha 3104D/DS: 4 saídas de níveis usando relés de estado sólido;

- Linha 3107D/DS: 8 saídas de níveis usando relés de estado sólido;
- Características:
 - \circ Típico 24Vcc/ca, 0,5A Resistência de Contato 0,5 Ω
 - o Máximo 60Vcc/ca, 0,6A Resistência de Contato 0,8 Ω

20 Complementos opcionais da família 3100D/DS Alfa Instrumentos

Conversores

- DeviceNet[™] mod. 2202
- EtherNet/IP™ mod. 2262
- PROFIBUS-DP mod. 2244
- PROFINET mod. 2252

Caixa de reles mod. 4424

 Permite ligação de cargas acima da capacidade das saídas internas (SSR) dos Indicadores e implementação de automações locais simples, como: controles de enchimento de recipientes ou tanques, alarmes, passa/não passa etc.

Display de Área mod. DA-05

 Visualização de peso a distâncias maiores, com dígitos de 200mm de altura.

Caixa à Prova de Explosão mod. 4502

 Para uso em áreas classificadas, com Barreiras de Proteção Intrínseca internas.

Botão de Acionamento Remoto mod. 9109

 Recomendado em aplicações com acionamento muito frequente dos comandos de Tara ou Impressão, para preservação do teclado frontal do Indicador.

Pedal de Acionamento mod. 9108

 Libera as mãos do operador nas operações de Tara ou Impressão frequentes.

21 Contato

Alfa Instrumentos Eletrônicos www.alfainstrumentos.com.br vendas@alfainstrumentos.com.br R. Cel. Mário de Azevedo. 138 02710-020 São Paulo – SP Brasil Tel.: (11) 3952-2299 WHATSAPP (11) 94147-2947 CNPJ: 50.632.017/0001-30